“Non-linearities and upscaling in porous media“

A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media

Florin Adrian Radu
Jan Martin Nordbotten
Iuliu Sorin Pop
Kundan Kumar

Preprint 2014/8
A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media

Florin Adrian Radu¹, Jan Martin Nordbotten¹, Iuliu Sorin Pop¹,², Kundan Kumar¹,³

¹ Department of Mathematics, University of Bergen, P. O. Box 7800, N-5020 Bergen, Norway
² Department of Mathematics and Computer Science, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
³ ICES, University of Texas at Austin, 201 East 24th St, Austin, Texas, US

e-mails: {florin.radu, jan.nordbotten, kundan.kumar}@math.uib.no, i.pop@tue.nl

Abstract

In this work we consider a mathematical model for two-phase flow in porous media. The fluids are assumed immiscible and incompressible and the solid matrix non-deformable. The mathematical model for the two-phase flow is written in terms of the global pressure and a complementary pressure (obtained by using the Kirchhoff transformation) as primary unknowns. For the spatial discretization, finite volumes have been used (more precisely the multi-point flux approximation method) and in time the backward Euler method has been employed. We present here a new linearization scheme for the nonlinear system arising after the temporal and spatial discretization. We show that the scheme is linearly convergent. Numerical experiments are presented that sustain the theoretical results.

Keywords: two-phase flow, linearization schemes, finite volume, MPFA, convergence analysis.

1. Introduction

Water and soil pollution, CO₂ storage, enhanced oil recovery and nuclear waste management are typical examples of two-phase porous media flows with obvious high societal relevance. A crucial role in understanding two-phase flow in porous media is played by numerical simulations, including mathematical modelling and numerical methods.

Mathematical models of two-phase flow in porous media consist of coupled, nonlinear and possibly degenerate partial differential equations. This makes the design and implementation of efficient numerical schemes for two-phase flow in porous media a challenging task. Locally conservative discretizations such as finite volume [1, 12, 13, 18, 30] and mixed finite element [7, 5] methods are popular spatial discretization as they alleviate many stability issues. Furthermore, often long time-scales are of interest in applications, so fully implicit temporal discretizations are, in general, preferred.

At each time step, the spatial and temporal discretizations thus lead to a large system of nonlinear equations. This system is usually solved by either Picard’s method [20] or Newton’s method.
The former is linearly convergent while the latter is quadratically convergent. The quadratic convergence of Newton’s method comes at the price of only local convergence in solution space, however it remains a very powerful tool when applied to systems arising from discretization of parabolic equations. This is because, in this case, the starting iteration is chosen as the solution at the last time step and the initial error can be controlled. In this way, by adjusting the time step size one ensures that the starting iteration is in the convergence region of the method.

In order to apply Newton’s method to degenerate problems one needs a further regularization step [31, 32, 33], which may alter the quality of the solution (in particular the mass balance). Moreover, the time-step restriction depends on the mesh diameter and on the size of the regularization step, which may be relatively restrictive in practice (see [32, 33] for a priori derived convergence conditions for the Newton method when applied to transport equations). Thus, we identify two main concerns of Newton’s method: the need of regularization for degenerate problems, as well as the time-step constraint implicitly imposed by the convergence region.

A possible improvement to Newton’s method for degenerate problems is the semismooth Newton method [21]. This method is of a higher algorithmic complexity and requires additional reformulation of the model by adding so called complementary conditions. The semismooth Newton method can be applied to two-phase flow or multicomponent transport with much better results compared to Newton’s method (see please [21, 23, 24]).

In this work we propose and analyse a new linearization scheme for finite volume discretization schemes for two-phase flow. The proposed scheme is a monotone fixed point iteration [29, 34]. We show the linear convergence and robustness of the scheme, subject to a relatively mild restriction on the time step size but independent of grid size. Moreover, the scheme does not involve the calculation of derivatives, which is an advantage over both Picard and Newton methods. Both analysis and numerical experiments indicate that the new scheme is a valuable alternative to Picard or Newton-type methods for solving two-phase flow in porous media.

The paper is structured as follows. In Section 2, we present the two-phase model considered here, describe the linearization scheme and show its convergence. The numerical results are given in Section 3, which show the applicability of the method. The paper ends with some concluding remarks in Section 4.

2. Mathematical model and discretization

We consider a simplified mathematical model for two-phase flow in porous media. The fluids are immiscible and incompressible and the solid matrix is non-deformable. The formulation adopted here uses the global pressure and a complementary pressure (obtained by using the Kirchhoff transformation) as primary unknowns (see [4, 9, 10]). For simplicity of exposition, we assume spatially homogeneous relative permeability and capillary pressure functions, and no gravity.

Throughout this paper we use common notations from functional analysis. The domain \(\Omega \subset \mathbb{R}^d \), \(d \) being the dimension of the space, is open, bounded and with a Lipschitz continuous boundary. By \(C \) we mean a positive constant, not depending on the unknowns or the discretization parameters.

[6, 20, 28, 31, 32, 33]
2.1. Governing equations

Mass (volume) balance:

\[\frac{\partial s}{\partial t} + \nabla \cdot \vec{q}_w = f_1(s). \]

(1)

Fractional phase flux

\[\vec{q}_w = -k \nabla \theta + f_w(s) \vec{q}. \]

(2)

Conservation of total phase volumes

\[\nabla \cdot \vec{q} = f_2(s). \]

(3)

Darcy’s law for total flow

\[\vec{q} = -\lambda(s)k \nabla p. \]

(4)

The equations hold true in \(\Omega \times [0, T] \), with \(T \) denoting the final time. The system is closed by an invertible relationship between the saturation \(s \) and the complementary pressure \(\theta \), i.e. \(s = s(\theta) \) and constitutive laws for the various functions \(f_\alpha, \alpha \in \{1, 2, w\} \). The model is a reformulation of the two-phase system

\[\frac{\partial}{\partial t} (\phi_\alpha \rho_\alpha s_\alpha) + \nabla \cdot (\rho_\alpha \vec{q}_\alpha) = \Psi_\alpha, \quad \alpha = w, n, \]

(5)

\[\vec{q}_\alpha = -\frac{k_{r,\alpha}}{\mu_\alpha} k \nabla p_\alpha, \quad \alpha = w, n, \]

(6)

\[s_w + s_n = 1, \]

(7)

\[p_n - p_w = p^\text{cap}(s_w). \]

(8)

We denoted by \(w \) and \(n \) the wetting and non-wetting phase, respectively. Here: the porosity \(\phi \), the densities \(\rho_w, \rho_n \) and the viscosities \(\mu_w, \mu_n \) are constants. Furthermore, there are no exchange terms between the phases, and the capillary pressure \(p^\text{cap} \) and the relative permeabilities \(k_{r,w}, k_{r,n} \) are assumed known, monotone and Lipschitz continuous functions of the wetting phase saturation \(s_w \). To transform the system (5)-(8) into the system (1)-(4) one introduces the global pressure and a complementary pressure, defined by

\[p(x) := p_n(x) - \int_0^s f_w(x, \xi) \frac{\partial p^\text{cap}(x, \xi)}{\partial \xi} d\xi, \]

(9)

\[\theta(x) := -\int_0^s f_w(x, \xi) \lambda_n(x, \xi) \frac{\partial p^\text{cap}(x, \xi)}{\partial \xi} d\xi, \]

(10)

where \(s := s_w \). The phase mobilities \(\lambda_\alpha := \frac{k_{r,\alpha}}{\mu_\alpha} \), \(\alpha = w, n \) and the fractional flow function \(f_w := \frac{\lambda_w}{\lambda_w + \lambda_n} \) are given, Lipschitz continuous functions of \(s \). For the details of the transformation please see [4, 9, 10].

The system (1)-(4) consists of two coupled nonlinear partial differential equations, one degenerate elliptic - parabolic and the other elliptic. Existence and uniqueness of a solution for the system (1)-(4) has been proved in [10]. Initial and boundary conditions complete the model.
2.2. Assumptions on the data

Throughout this paper we consider the following physically reasonable assumptions on the data.

(A1) \(s(\cdot) \) is monotone increasing and Lipschitz continuous.

(A2) The permeability \(k \) is strictly positive, the total mobility \(\lambda(\cdot) \) is Lipschitz continuous and there exists \(a_*, a^* \in \mathbb{R} \) such that for all \(y \in \mathbb{R} \)

\[
0 < a_* \leq \lambda(y) \leq a^* < \infty.
\]

(A3) \(f_1(\cdot), f_2(\cdot) \) and \(f_w(\cdot) \) are Lipschitz continuous and bounded functions.

2.3. Temporal discretization

Let \(N \geq 1 \) be an integer giving the time step \(\Delta t = T/N \), and let \(t_n = n\Delta t \), for \(n = 1, \ldots, N \) the discrete time points. For the time discretization of (1) we use the backward Euler method. This leads to a nonlinear system of equations. The variables in (2)-(4) are evaluated at the current time \(t^n \), while (1) becomes

\[
s^n + \Delta t(\nabla \cdot \vec{q}^n_w - f_1(s^{n-1})) = s^{n-1}.
\]

2.4. Iterative approach

The standard approach to solving the coupled equations resulting after applying the backward Euler time discretization to (1)-(4) is to apply Newton’s method. As mentioned in the introduction, this has several drawbacks. First, the Jacobian matrix of the system needs to be assembled, and secondly, the convergence of the algorithm is not guaranteed when the initial guess is not close enough to the solution, which implies a restriction on the time step size. We consider therefore the applicability of a fixed point linearization method. Let \(L > 0 \) be a constant such that

\[
L \geq \sup_{\theta} \frac{d}{d\theta}s(\theta).
\]

At time \(t_n \) and for given \(\theta^{n,i-1}, \theta^n \), the iterate \(i \) is obtained by solving the following system of equations

\[
L(\theta^{n,i} - \theta^{n,i-1}) + s^{n,i-1} + \Delta t(\nabla \cdot \vec{q}^{n,i}_w - f_1(s^{n,i-1})) = s^{n-1},
\]

\[
\vec{q}^{n,i}_w = -k\nabla \theta^{n,i} + f_w(s^{n,i-1})\vec{q}^{n,i},
\]

\[
\nabla \cdot \vec{q}^{n,i} = f_2(s^{n,i-1}),
\]

\[
\vec{q}^{n,i} = -\lambda(s^{n,i-1})k\nabla p^{n,i},
\]

where \(s^{n,i-1} = s(\theta^{n,i-1}) \) and \(s^n = s(\theta^n) \). Note that this system is decoupled, in the sense that equations (16)-(17) and (14)-(15) can be solved sequentially. Thus, only one global (elliptic or parabolic) system needs to be solved at a time. We point out that the addition of the term \(L(\theta^{n,i} - \theta^{n,i-1}) \) is necessary to overcome the degeneracy of the problem. This term is essential for obtaining a robust, linear convergent numerical scheme.
2.5. Spatial discretization

Equations (14)-(17) have previously been solved in the context of mixed finite element approximations to the spatial derivatives. Here, in contrast, we consider a finite volume setting. We introduce a finite volume duplex \(\mathcal{D} = (\mathcal{T}, \mathcal{F}) \), representing the mesh Tessellation and Faces [14]:

- \(\mathcal{T} \) is a non-overlapping partition of the domain \(\Omega \). Furthermore, let \(m_K \) denote the \(d \)-dimensional measure of \(K \in \mathcal{T} \).

- \(\mathcal{F} \) is a set of faces of the partitioning \(\mathcal{T} \). Naturally, the faces must be compatible with the mesh, such that for all \(K \in \mathcal{T} \) there exists a subset \(\mathcal{F}_K \subset \mathcal{F} \) such that \(\partial K = \bigcup_{\sigma \in \mathcal{F}_K} \sigma \).

Additionally, we define the following useful subset of the mesh duplex:

- For each face \(\sigma \in \mathcal{F} \), we denote the neighboring cells \(\mathcal{T}_\sigma \). Note that for all internal faces \(\mathcal{T}_\sigma \) will contain exactly two elements, while it contains a single element when \(\sigma \subset \partial \Omega \).

This is sufficient to provide an abstract definition of a finite volume method for equations (14)-(17). With respect to equations (14)-(17), we identify \(p \) and \(\theta \) as cell variables and \(q_n^w = \vec{q}_w \cdot \vec{v}, q_\sigma = \vec{q} \cdot \vec{v} \), as face variables, and denote the corresponding discrete spaces as \(\mathcal{H}_T \) and \(\mathcal{H}_F \). We denoted by \(\nu \) the outer unit normal.

A finite volume method is characterized by the existence of a discrete operator \(\tilde{\nabla} \cdot : \mathcal{H}_F \rightarrow \mathcal{H}_T \). For \(\vec{q} \in \mathcal{H}_F \) and for each \(K \in \mathcal{T} \), it is defined as

\[
(\tilde{\nabla} \cdot \vec{q})_K = \frac{1}{m_K} \sum_{\sigma \in \mathcal{F}_K} \pm m_\sigma q_\sigma.
\]

(18)

The choice of sign in equation (18) is determined by the convention on normal vectors for faces.

Various finite volume methods differ in their definition and construction of discrete operators representing equation (4), which we denote by \(F(p, s) : (\mathcal{H}_T \times \mathcal{H}_T) \rightarrow \mathcal{H}_F \). It is typical to consider this mapping as a product \(F = F_1(p)F_2(s; F_1(p)) \) where \(F_1 : \mathcal{H}_T \rightarrow \mathcal{H}_F \) and \(F_2 : (\mathcal{H}_T \times \mathcal{H}_T) \rightarrow \mathcal{H}_T \). Classically, \(F_1 \) is a discrete representation of a Darcy flux (in this work we consider only linear finite volume methods, therefore \(F_1 \) is a linear function), while \(F_2 \) is a (potentially smoothed) upstream value of the function \(\lambda(s) \). Standard formulations for upstream weighting used in porous media follow those for hyperbolic conservation laws [22], or their multidimensional generalizations [17].

We denote by \(|| \cdot || \) the discrete \(L_2 \) norm

\[
||f||^2 := \sum_{K \in \mathcal{T}} m_K |f_K|^2,
\]

(19)

and by \(\langle \cdot, \cdot \rangle \) the associated scalar product

\[
\langle f, g \rangle := \sum_{K \in \mathcal{T}} m_K f_K g_K.
\]

(20)

We further assume:
Remark 2.1. The assumption (A4) is satisfied for the most finite volume methods. One usually has \(\langle F_1 u, u \rangle = C\|q\|^2\), while \(\langle F_1 u, u \rangle \geq C'\|u\|^2\) follows from the discrete Poincare inequality.

Let now \(n \in \mathbb{N}, n \geq 1\) denote the time index, \(t_n\) being the actual time step. The fully discrete (nonlinear) scheme reads:

Having computed \(\theta^{n-1}\), find \((\theta^n, p^n, q^n_w, q^n)\) \(\in \mathcal{H}_T \times \mathcal{H}_T \times \mathcal{H}_F \times \mathcal{H}_F\) such that

\[
\begin{align*}
s^n + \Delta t (\nabla \cdot \bar{q}_w^n - f_1(s^n)) &= s^{n-1}, \\
\bar{q}_w^n &= F_1(\theta^n) + f_w(F_2(s^n; F_1(\theta^n)))q^n, \\
\nabla \cdot \bar{q}^n = f_2(s^n), \\
\bar{q}^n &= F_1(p^n)F_2(s^n; F_1(p^n)),
\end{align*}
\]

where \(s^n = s(\theta^n)\) and \(s^{n-1} = s(\theta^{n-1})\). Equations (22) and (24) are understood elementwise for each \(K \in T\), while equations (23) and (25) hold for each face \(\sigma \in F\). Furthermore, note that equations (24)-(25) are a nonlinear elliptic system, which is decoupled from (22)-(23) (itself also a nonlinear system). The unknowns \(\theta^n, p^n\) are cellwise constant (implicitly the same holds for \(s^n = s(\theta^n)\)).

In line with (14)-(17), the linearization of (22)-(25) reads (\(i \geq 1\) being the iteration step):

Given \(\theta^{n,i-1}\), find \((\theta^{n,i}, p^{n,i}, q^{n,i}_w, q^{n,i})\) \(\in \mathcal{H}_T \times \mathcal{H}_T \times \mathcal{H}_F \times \mathcal{H}_F\) such that

\[
\begin{align*}
L(\theta^{n,i} - \theta^{n,i-1}) + s^{n,i-1} + \Delta t (\nabla \cdot \bar{q}^{n,i}_w - f_1(s^{n,i-1})) &= s^{n-1}, \\
\bar{q}^{n,i}_w &= F_1(\theta^{n,i}) + f_w(F_2(s^{n,i-1}; F_1(\theta^{n,i-1}))q^{n,i}, \\
\nabla \cdot \bar{q}^{n,i} = f_2(s^{n,i-1}), \\
\bar{q}^{n,i} &= F_1(p^{n,i})F_2(s^{n,i-1}; F_1(p^{n,i-1}))
\end{align*}
\]

where \(s^{n,i-1} = s(\theta^{n,i-1})\) and \(s^{n-1} = s(\theta^{n-1})\). We start the iterations by taking \(\theta^{n,0} = \theta^{n-1}\). The equations (28)-(29) now form a linear elliptic system, which is decoupled from (26)-(27) (itself also a linear system).

2.6. Convergence of the iterative method

We introduce now the errors at the iteration step \(i\):

\[
\begin{align*}
e^{n,i}_\theta &= \theta^{n,i} - \theta^n, \quad e^{n,i}_p = p^{n,i} - p^n, \quad e^{n,i}_s = s^{n,i} - s^n = s(\theta^{n,i}) - s(\theta^n).
\end{align*}
\]

In order to show the convergence of the scheme (26)-(29) we will prove that

\[
\|e^{n,i}_\theta\|, \|e^{n,i}_p\| \to 0 \text{ when } i \to \infty,
\]

where \(\|\cdot\|\) is the \(L_2\) discrete norm (introduced in (19)). From \(\|e^{n,i}_\theta\| \to 0\), obviously it follows that also \(\|e^{n,i}_s\| \to 0\).

The convergence of the proposed scheme is proved in the theorem below.
Theorem 2.1. Assuming (A1)-(A4), the linearization scheme (26)-(29) is (at least) linearly convergent if the time step Δt is small enough.

Proof. We give the main idea of the proof, pointing out only what is peculiar for the convergence of the new scheme and assuming that the standard estimates can be obtained for the considered finite volume method. By subtracting (26)-(29) from (22)-(25) one gets

$$L(e^{n,i}_\theta - e^{n,i-1}_\theta + e^{n,i-1}_s + \Delta tG_1(\theta^{n,i}, \theta^n, p^{n,i}, p^n, s^{n,i-1}, s^n) = 0, \quad (30)$$

and

$$\nabla \cdot G_2(p^{n,i}, p^n, s^{n,i-1}, s^n) = 0, \quad (31)$$

with the expressions G_1 and G_2 depending on the considered finite volume scheme. By standard techniques and using (A2)-(A4), (31) implies

$$\|e^{n,i}_p\| + \|q^{n,i} - \bar{q}\| \leq C_0\|e^{n,i-1}_s\|, \quad (32)$$

with C_0 not depending on the discretization parameters. Multiplying (30) with $e^{n,i}_\theta$ (the multiplication is done element wise), weighing by the cell volume m_K and then summing up the resulting gives

$$L(e^{n,i}_\theta - e^{n,i-1}_\theta, e^{n,i}_\theta) + \langle e^{n,i-1}_s, e^{n,i}_\theta \rangle + \Delta t\langle G_1(\theta^{n,i}, \theta^n, p^{n,i}, p^n, s^{n,i-1}, s^n), e^{n,i}_\theta \rangle = 0. \quad (33)$$

Using Young's inequality, i.e. $|ab| \leq \frac{\epsilon}{2} |a|^2 + \frac{1}{2\epsilon} |b|^2$ for all $\epsilon > 0$) and (A4) leads to

$$\langle G_1(\theta^{n,i}, \theta^n, p^{n,i}, p^n, s^{n,i-1}, s^n), e^{n,i}_\theta \rangle \geq C_1\|e^{n,i}_\theta\|^2 - C_2\|e^{n,i-1}_s\|^2 - C_3\|e^{n,i}_p\|^2 \quad (34)$$

where the constants $C_1 > 0, C_2 \geq 0, C_3 \geq 0$ are not depending on the time step size Δt or mesh diameter h. Putting together now (32) - (34), after some algebraic manipulations we obtain

$$(\frac{L}{2} + C_1\Delta t)\|e^{n,i}_\theta\|^2 + \frac{L}{2}\|e^{n,i}_\theta - e^{n,i-1}_\theta\|^2 + \langle e^{n,i-1}_s, e^{n,i}_\theta \rangle \leq \frac{L}{2}\|e^{n,i-1}_s\|^2 + \Delta t(C_2 + C_3C_0^2)\|e^{n,i-1}_s\|^2. \quad (35)$$

By using the monotonicity of $s(\cdot)$, its Lipschitz continuity and the Young inequality we further get

$$(\frac{L}{2} + C_1\Delta t)\|e^{n,i}_\theta\|^2 + \frac{L}{2}\|e^{n,i}_\theta - e^{n,i-1}_\theta\|^2 + \langle e^{n,i-1}_s, e^{n,i-1}_s \rangle \leq \frac{L}{2}\|e^{n,i-1}_s\|^2 + \Delta t(C_2 + C_3C_0^2)\|e^{n,i-1}_s\|^2 + \langle e^{n,i-1}_s, e^{n,i-1}_\theta - e^{n,i}_{\theta} \rangle. \quad (36)$$

By using (13), i.e. that the constant L is bigger than or equal to the Lipschitz constant of $s(\cdot)$ and Young’s inequality, the above implies

$$(\frac{L}{2} + C_1\Delta t)\|e^{n,i}_\theta\|^2 + \frac{1}{L}\|e^{n,i-1}_s\|^2 \leq \frac{L}{2}\|e^{n,i-1}_s\|^2 + \Delta t(C_2 + C_3C_0^2)\|e^{n,i-1}_s\|^2 + \frac{1}{2L}\|e^{n,i-1}_s\|^2. \quad (37)$$
From (37) we immediately obtain

\[
(L_2 + C_1 \Delta t) \| e^{n,i}_\theta \|^2 + \left(\frac{1}{2L} - \Delta t (C_2 + C_3 C_0^2) \right) \| e^{n,i-1}_s \|^2 \leq L_2 \| e^{n,i-1}_\theta \|^2.
\] (38)

Under the mild restriction on the time step size

\[
\Delta t \leq \frac{1}{2L(C_2 + C_3 C_0^2)},
\]

the convergence of the scheme follows. The time step restriction does not depend on the grid size, which is by far not that restrictive as a stability condition of an explicit scheme.

2.7. An appropriate finite volume method

For concreteness, we consider MPFA-type discretizations to obtain the linear operator \(F_1 \) (see [1] for an introduction). These are constructed such that the support of \(q_\sigma \) is local (in terms of connectivity of \(D \)). Furthermore, the MPFA discretizations have been shown to be robust and convergent for a range of relevant parameters and grids [19, 3]. While any of the established MPFA methods are applicable, our particular interest is the MPFA method recently proposed in [25], which is the scalar counter-part of the finite volume method for elasticity given in [26]. This MPFA method retains the finite volume structure of equation (18) exactly, and uses a stabilization of the so-called O-method [1] to approximate the discrete flux \(F_1 \). The convergence of the method is established in [25]. In particular, this implies also that (A4) holds true.

3. Numerical results

Using the scheme as described above, we consider the 2D and 3D domains as given respectively by the unit square and unit cube with Dirichlet boundary conditions. Our main aim is to provide a numerical verification of the results of Theorem 2.1. Motivated by coarse-scale models for CO\(_2\) storage [8], linear relative permeability functions are considered. More exactly, we take \(\lambda_w(s) = \lambda_b s \) and \(\lambda_n(s) = \lambda_c (1 - s) \) (with \(\lambda_b < \lambda_c \)). The fractional flow function \(f_w \) thus becomes

\[
f_w(s) = \frac{s}{s + \frac{\lambda_c}{\lambda_b} (1 - s)}.
\]

Furthermore, we consider a capillary pressure function on the form

\[
p_{\text{cap}}(s) = c (s + (\lambda_b / \lambda_c - 1)^{-1} \ln(s)).
\]

This choice ensures that the complementary pressure function is also nonlinear, yet still analytically tractable:

\[
s(\theta) = 1 - \left(1 + \frac{2(\lambda_b - \lambda_c)\theta}{c\lambda_c\lambda_b} \right)^{1/2}.
\]

The derivative of \(s(\cdot) \) is unbounded, as \(s(\cdot) \) is only Hölder continuous at the endpoint \(s = 1 \) (i.e. \(\theta = \frac{c\lambda_c \lambda_b}{2(\lambda_c - \lambda_b)} \)). Nevertheless, we take \(s = 0 \) as initial and boundary data, and a (time limited)
source term in the center of the domain such that the saturation remains uniformly bounded below $s = 0.2$. In this case $s(\cdot)$ becomes Lipschitz continuous, with the Lipschitz constant $L = \frac{5 \lambda_c - \lambda_b}{4 \epsilon \lambda_c \lambda_b}$.

A typical simulation on various unstructured and structured grids is depicted in Figure 1. All simulations were conducted on a standard laptop using the Matlab implementation environment, and the total run-time for the test suite amounts to less than 10 minutes.

We consider grids varying from 400 to 10,000 cells in 2D and 3D. In all cases, we use a constant time-step of 0.1 (dimensionless units). For all simulations, we give a tolerance in absolute residual error of 10^{-3} for the nonlinear system. Throughout all numerical experiments we observe that the linear error reduction factor is stable between 3 and 8.5, independent of grid type, grid resolution, or dimensionality of the problem, as illustrated by the results shown in Figure 2. This implies that in no instance more than a maximum of 7 iterations was needed. Furthermore, the experiments support the assertion that no grid-dependent time-step restriction is introduced by the solution of the nonlinear system. This verifies the robustness and generality of the iterative scheme, and the suitability of the finite volume discretization for complex geometries.

Figure 1: Saturation s from example simulation results after 4 time steps on various grids. The use of MPFA spatial discretizations yields very little grid orientation effects, while the combination of implicit time integration allows for long time steps.
4. Conclusions

We presented a robust linearization scheme for FV discretizations of two-phase flow in porous media. The scheme is linearly convergent with a mild mesh independent restriction on the time step size. The restriction is very mild compared to the stability condition for explicit temporal discretizations or with typical restrictions for Newton’s method. In these cases, the time step restriction depends on the mesh diameter, this not being the case for the new scheme. Another advantage of the presented scheme is that it does not involve the calculations of derivatives. Numerical examples (both 2D and 3D) sustain the theoretical results. We especially remark that there is almost no difference in terms of number of iterations between the 2D and 3D computations, which is an argument for the efficiency of the scheme. The new numerical scheme is relatively simple to implement and is a valuable alternative to Picard or Newton methods.

Acknowledgements. The authors are members of the International Research Training Group NUPUS funded by the German Research Foundation DFG (GRK 1398), the Netherlands Organisation for Scientific Research NWO (DN 81-754) and by the Research Council of Norway (215627). F. A. Radu and I. S. Pop acknowledge the support of Statoil through the Akademia agreement. We also want to thank the anonymous referees for helping us to substantially improve the paper.

References

2007/1 Cao, Y. / Eikemo, B. / Helmig, R.: Fractional flow formulation for two-phase flow in porous media
2008/1 Helmig, R. / Weiss, A. / Wohlmuth, B.: Variational inequalities for modeling flow in heterogeneous porous media with entry pressure
2008/2 Cao, Y. / Helmig, R. / Wohlmuth, B.: Convergence study and comparison of the multipoint flux approximation L-method
2008/3 van Duijn, C.J. / Pop, I.S. / Niessner, J. / Hassanizadeh, S.M.: Philip’s redistribution problem revisited: the role of fluid-fluid interfacial areas
2008/6 Cao, Y. / Helmig, R. / Wohlmuth, B.: Geometrical interpretation of the multipoint flux approximation L-method
2008/7 Vervoort, R.W. / van der Zee, S.E.A.T.M.: Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework
2008/10 Wolff, M.: Comparison of mathematical and numerical models for two-phase flow in porous media
2008/12 Cao, Y. / Helmig, R. / Wohlmuth, B.: Convergence of the multipoint flux approximation L-method for homogeneous media on uniform grids
2008/13 Ochs, S.O.: Development of a multiphase multicomponent model for PEMFC
2008/14 Walter, L.: Towards a model concept for coupling porous gas diffusion layer and gas distributor in PEM fuel cells
2009/1 Hægland, H. / Assteerawatt, A. / Helmig, R. / Dahle, H.K.: Streamline approach for a discrete fracture-matrix system
2009/3 Heimann, F.: An unfitted discontinuous Galerkin method for two-phase flow
2009/4 Hilfer, R. / Doster, F.: Percolation as a basic concept for macroscopic capillarity
van Noorden, T.L. / Pop, I.S. / Ebigbo, A. / Helmig, R.: An effective model for biofilm growth in a thin strip

Baber, K.: Modeling the transfer of therapeutic agents from the vascular space to the tissue compartment (a continuum approach)

Faigle, B.: Two-phase flow modeling in porous media with kinetic interphase mass transfer processes in fractures

Fritz, J. / Flemisch, B. / Helmig, R.: Multiphysics modeling of advection-dominated two-phase compositional flow in porous media

Støverud, K.: Modeling convection-enhanced delivery into brain tissue using information from magnetic resonance imaging

Kissling, F. / Rohde, C.: The computation of non-classical shock waves with a heterogeneous multiscale method

Rosenbrand, E.: Modelling biofilm distribution and its effect on two-phase flow in porous media

Schöniger, A.: Parameter estimation by ensemble Kalman filters with transformed data

Linders, B.: Experimental investigations on horizontal redistribution

Rau, M.T.: Geostatistical analysis of three-dimensional hydraulic conductivity fields by means of maximum Gauss copula

Kraus, D.: Two phase flow in homogeneous porous media - The role of dynamic capillary pressure in modeling gravity driven fingering

Brugman, R.: Dimensionless analysis of convection enhanced drug delivery to brain tissues

Sinsbeck, M.: Adaptive grid refinement for two-phase flow in porous media

Kissling, F. / Helmig, R. / Rohde, C.: A multi-scale approach for the modelling of infiltration processes in the unsaturated zone

Köppl, T. / Wohlmuth, B. / Helmig, R.: Reduced one-dimensional modelling and numerical simulation for mass transport in fluids

Kumar, K. / Pop, I.S. / Radu, F.A.: Convergence analysis for a conformal discretization of a model for precipitation and dissolution in porous media

Hommel, J.: Modelling biofilm induced calcite precipitation and its effect on two phase flow in porous media
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012/4</td>
<td>Estrella, D.</td>
<td>Experimental and numerical approximation methods for zero-valent iron transport around injection wells</td>
</tr>
<tr>
<td>2012/5</td>
<td>Heimhuber, R.</td>
<td>Efficient history matching for reduced reservoir models with PCE-based bootstrap filters</td>
</tr>
<tr>
<td>2012/6</td>
<td>Kissling, F. / Karlsen, K.H.</td>
<td>On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure</td>
</tr>
<tr>
<td>2012/7</td>
<td>Fritz, S.</td>
<td>Experimental investigations of water infiltration into unsaturated soil - Analysis of dynamic capillarity effects</td>
</tr>
<tr>
<td>2012/8</td>
<td>Strohmer, V.</td>
<td>Numerische Analysis von nahezu parallelen Strömungen in porösen Medien</td>
</tr>
<tr>
<td>2012/9</td>
<td>Kissling, F. / Rohde, C.</td>
<td>The computation of nonclassical shock waves in porous media with a heterogeneous multiscale method: The multidimensional case</td>
</tr>
<tr>
<td>2012/10</td>
<td>Fetzer, T.</td>
<td>Numerical analysis of the influence of turbulence on exchange processes between porous-medium and free flow</td>
</tr>
<tr>
<td>2012/11</td>
<td>Schröder, P.</td>
<td>A response surface bootstrap filter to calibrate CO₂ injection models</td>
</tr>
<tr>
<td>2013/1</td>
<td>Brunner, F. / Radu, F.A. / Knabner, P.</td>
<td>Analysis of an upwind-mixed hybrid finite element method for transport problems</td>
</tr>
<tr>
<td>2013/2</td>
<td>Köppel, M.</td>
<td>Flow modelling of coupled fracture-matrix porous media systems with a two mesh concept</td>
</tr>
<tr>
<td>2013/3</td>
<td>van Helvoort, M.</td>
<td>Upscaling of processes involving rough boundaries</td>
</tr>
<tr>
<td>2013/4</td>
<td>Redeker, M. / Haasdonk, B.</td>
<td>A POD-EIM reduced two-scale model for crystal growth</td>
</tr>
<tr>
<td>2013/5</td>
<td>Vogler, D.</td>
<td>A comparison of different model reduction techniques for model calibration and risk assessment</td>
</tr>
<tr>
<td>2014/1</td>
<td>Song, N.</td>
<td>Investigation of a decoupling scheme for the modeling of reactive transport</td>
</tr>
<tr>
<td>2014/2</td>
<td>Aydogdu, A.B.</td>
<td>Phase field modelling of critical shear band evolution in granular media on the basis of a micropolar porous medium theory</td>
</tr>
<tr>
<td>2014/3</td>
<td>Becker, B.</td>
<td>Investigation of error estimates for cell centered finite volume schemes: Analysis and improvement of grid adaptation strategies in DuMux</td>
</tr>
<tr>
<td>2014/4</td>
<td>Moghaddam, N.D.</td>
<td>Sorption of methane and ethane on Belgian black shale using a manometric setup</td>
</tr>
<tr>
<td>2014/5</td>
<td>Schwenck, N. / Flemisch, B. / Helmig, R. / Wohlmuth, B.</td>
<td>Dimensionally reduced flow models in fractured porous media: crossings and boundaries</td>
</tr>
<tr>
<td>2014/6</td>
<td>Redeker, M. / Pop, S. / Rohde, C.</td>
<td>Upscaling of a tri-phase phase-field model for precipitation in porous media</td>
</tr>
<tr>
<td>2014/7</td>
<td>Faigle, B. / Ahmed Elfeel, M. / Helmig, R. / Becker, B. / Flemisch, B. / Geiger, S.</td>
<td>Multi-physics modeling of non-isothermal compositional flow on adaptive grids</td>
</tr>
</tbody>
</table>
Radu, F.A. / Nordbotten, J.M. / Pop, I.S. / Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media