Non-linearities and Upscaling in Porous Media

Two-phase flow in porous media: dynamic capillarity and heterogeneous media

van Duijn, C. J.
Cao, X.
Pop, I. S.
Two-phase flow in porous media: dynamic capillarity and heterogeneous media

C. J. van Duijn · X. Cao · I. S. Pop

Abstract We investigate a two-phase porous media flow model, in which dynamic effects are taken into account in phase pressure difference. We consider a one-dimensional heterogeneous case, with two adjacent homogeneous blocks separated by an interface. The absolute permeability is assumed constant, but different in each block. This may lead to the entrapment of the non-wetting phase (say, oil) when flowing from the coarse material into the fine material.

We derive the interface conditions coupling the models in each homogeneous block. In doing so, the interface is approximated by a thin porous layer, and its thickness is then passed to zero. Such results have been obtained earlier for standard models, based on equilibrium relationship between the capillary pressure and the saturation. Then, oil is trapped until its saturation on the coarse material side of the interface, exceeds an entry value. In the non-equilibrium case, the situation is different. Due to the dynamic effects, oil may still flow into the fine material even after the saturation drops under the entry point, and this flow may continue for a certain amount of time that is proportional to the non-equilibrium effects. This suggests that operating in a dynamic regime reduces the account of oil trapped at interfaces, leading to an enhanced oil recovery.

Finally, we present some numerical results supporting the theoretical findings.

Keywords dynamic capillary pressure · immiscible flow · heterogeneity · trapping
1 Introduction

Two-phase (wetting/non-wetting) flows are widely encountered in various real-life processes. A few prominent examples are water driven oil recovery, or geological sequestration of CO$_2$. These processes involve large spatial scales, and (rock) heterogeneities appear naturally. In this paper we consider a simplified situation, where the medium consists of two different homogeneous blocks with different permeabilities (coarse and fine), which are separated by an interface. This makes the transition from one material to another not smooth, and appropriate conditions have to be imposed at the interface for coupling the models written in each of the two blocks. In particular, when the underlying models are involving entry pressures to describe the dependency of the capillary pressure on the phase saturations, the non-wetting phase may remain trapped in the coarse block at the interface.

This situation has been analyzed in [12,14], but for the case when the phase pressure difference depends on the, say, wetting phase phase saturation and the medium itself. These are standard models, for which the dependency between various quantities are determined under equilibrium conditions. Therefore, such models are also called equilibrium models. In the paper mentioned above, regularization arguments (i.e. approximating the interface by a thin porous layer ensuring a smooth transition between the two homogeneous blocks) are employed to derive appropriate coupling conditions between the models in the two sub-domains. The resulting conditions are the flux continuity and an extended pressure condition. We refer to [2,5,6] for the mathematical analysis of such models, where the existence of weak solutions has been analyzed. Further, the case of many layers is studied in [13,10], where homogenization techniques are applied for deriving an effective model. Such kind of models are also studied in [1,4,17,18,27,26], where appropriate numerical schemes are studied.

Various experiments [3,9] have invalidated the equilibrium assumptions, and motivated considering non-equilibrium approaches. Here we focus on models involving dynamic effects in the phase pressure difference, as proposed in [19]. In this case, we follow the ideas in [12,14] and derive the coupling conditions at the interface separating the two homogeneous blocks. When compared to the equilibrium case, a striking difference appears. In the former the non-wetting phase can only flow into the fine block if its saturation at the coarse block side of the interface exceeds an entry value, in the latter situation this flow can appear for lower saturation values. This is due to the dynamic effects i the phase pressure difference and can reduce the amount of non-wetting phase that remains trapped at the interface.

The models including dynamic effects in the phase pressure difference lead to so-called pseudo-parabolic problems. For such models, but posed in homogeneous domains, existence and uniqueness of weak solutions are obtained in [7,16,24]. The case of vanishing capillary effects and the connection to hyperbolic conservation laws is studied in [15,11]. For dynamic capillarity models in the heterogeneous case, but in the absence of an entry pressure, numerical schemes are discussed in [20]. This situation is similar to the case analyzed in [8], where the interface is replaced by a discontinuity in the initial conditions. Also, variational inequality approaches have been considered in [22] for situations including an entry pressure. However, the conditions are simply postulated and no derivation is presented.

In Section 2 we present the mathematical model. For simplicity we consider the case when only the absolute permeability is different in the two blocks, all other parameters being the same. In Section 3, we derive the coupling conditions at the interface. These are the flux continuity and an extended pressure continuity. In the last section, we discuss different numerical approaches, and present numerical experiments that confirm the analysis in Section 3.
2 Mathematical model

We consider the flow of two immiscible and incompressible phases in a one-dimensional heterogeneous porous medium. Letting \(s_w \) denote the saturation of the wetting fluid, and \(s_n \) the saturation of the non-wetting fluid, one has \(0 \leq s_w, s_n \leq 1 \). The porous medium is assumed to be saturated by the two fluids, \(s_w + s_n = 1 \).

Mass balance holds for each phase (see [25, 21]),

\[
\phi \frac{\partial s_\alpha}{\partial t} + \frac{\partial q_\alpha}{\partial x} = 0, \quad (\alpha = w, n),
\]

where \(\phi \) is the porosity assumed constant, and \(q_\alpha \) denotes the volumetric velocity of the phase \(\alpha \). These velocities satisfy the Darcy law

\[
q_\alpha = -\bar{k}(x) k_{r\alpha}(s_\alpha) \frac{\partial p_\alpha}{\partial x}, \quad (\alpha = w, n),
\]

where \(\bar{k}(x) \) is the absolute permeability of the porous medium, \(p_\alpha \) the pressure, \(\mu_\alpha \) the viscosity, and \(k_{r\alpha} \) the relative permeability of the \(\alpha \) phase. The functions \(k_{r\alpha} \) are assumed known. Gravity effects are disregarded, as they have no influence on the interface conditions derived here. Substituting (3) into (2) gives

\[
\phi \frac{\partial s_\alpha}{\partial t} - \frac{\partial}{\partial x} \left(\frac{\bar{k}(x) k_{r\alpha}(s_\alpha)}{\mu_\alpha} \frac{\partial p_\alpha}{\partial x} \right) = 0, \quad (\alpha = w, n).
\]

In standard models, the phase pressure difference depends on the saturation, which is determined experimentally. An example in the sense is the Leverett relationship

\[
p_n - p_w = p_c(x, s_w) = \sigma \sqrt{\phi \bar{k}(x)} J(s_w),
\]

where \(\sigma \) is the interfacial tension, and \(J \) a decreasing function.

The relationship in (5) is determined by measurements carried out under equilibrium condition. In other words, before measuring the pressure and saturation in a representative elementary volume, fluids have reached equilibrium and are at rest. However, processes of interest may not satisfy this condition, and dynamic effects have to be included. Alternatively to (5), in [19] the following model is proposed

\[
p_n - p_w = p_c(x, s_w) - \tau \frac{\partial s_w}{\partial t},
\]

where \(\tau \) is assumed to be known and constant. Summing the two equations in (4) and using (1), one gets

\[
\frac{\partial \bar{q}}{\partial x} = 0,
\]

where \(\bar{q} = -\frac{\bar{k}(x) k_{rw}}{\mu_w} \frac{\partial p_w}{\partial x} - \frac{\bar{k}(x) k_{rn}}{\mu_n} \frac{\partial p_n}{\partial x} \) denotes the total flow. In the one-dimension case, this means that \(\bar{q} \) is constant in space. Here we assume it is constant in time as well, and is positive. This allows reducing the two-phase flow model to a scalar equation in terms of, say \(s = s_w \). After rescaling the space \(x \) with \(L \), the time \(t \) with \(T \), and using the reference value \(K \) for the absolute permeability and \(\sigma \sqrt{\phi K} \) for the pressure, one obtains

\[
\frac{\partial s}{\partial t} + \frac{\partial F}{\partial x} = 0,
\]
where the F denotes the dimensionless flux of the wetting phase

$$ F = q f_w(s) + N_c k(x) \lambda(s) \frac{\partial}{\partial x} \left(\frac{J(s)}{\sqrt{k(x)}} - N_c \tau \frac{\partial s}{\partial t} \right). \quad (9) $$

Here $q = \frac{q_L}{\mu_L} > 0$, and $k(x) = \frac{k(x)}{K}$. Further, f_w is the fractional flow function of the wetting phase,

$$ f_w = \frac{k_{rw}(s)}{k_{rw}(s) + k_{rn}(s)/M}, $$

with the mobility ratio $M = \mu_n/\mu_w$, the capillary number $N_c = \frac{\sigma \sqrt{\phi L}}{\mu_n q L}$, the dimensionless damping factor $\tau = \tau_0 \frac{q}{\sigma \phi}$, and $\lambda(s) = k_{rn}(s)f_w(s)$. For simplicity, we assume here $N_c = 1$, as different values of N_c would not have any influence on the conditions derived below.

Throughout this work, we make the following assumptions

(A1) $k_{rw}, k_{rn}: [0, 1] \rightarrow [0, 1]$ are continuous differentiable functions satisfying

a) k_{rw} is strictly increasing such that $k_{rw}(0) = 0$ and $k_{rw}(1) = 1$;

b) k_{rn} is strictly decreasing such that $k_{rn}(0) = 1$ and $k_{rn}(1) = 0$;

(A2) J is $(0, 1] \rightarrow \mathbb{R}$ is continuous differentiable, decreasing and satisfies $J' < 0$ on $(0, 1]$, $J(1) \geq 0$.

We consider a simple heterogeneous situation, where two adjacent homogeneous blocks are separated by an interface located at $x = 0$. For the ease of presentation, we assume that all parameters and functional dependencies except the absolute permeability are the same. For the latter, we have

$$ k(x) = \begin{cases} k^-, & \text{if } x < 0 \text{ (the coarse medium)}, \\ k^+ & \text{if } x > 0 \text{ (the fine medium)}. \end{cases} $$

Here $k^- > k^+ > 0$ are given.

Throughout this paper, the non-wetting phase may be oil, or CO$_2$ or any other phase with non-wetting phase properties. For simplicity below we use as oil non-wetting phase. Also, by pressure we actually mean the phase pressure difference.

3 Conditions at the interface

The model (8)-(9) is a parabolic equation, where the factor $\frac{1}{\sqrt{k}}$ appears under a second order spatial derivative. Since k has a jump discontinuity at the interface, the model is only valid in each of the two blocks, and coupling conditions at $x = 0$ have to be derived. Commonly, the pressure continuity is taken as a second condition. However, this is shown to be inappropriate for entry-pressure models in the absence of dynamic effects ($\tau = 0$). This statement is made rigorous in [12] by regularizing k. Specifically, the interface is replaced by a thin layer in which k decays continuously from k^- to k^+. Next to k, we will use the quantity

$$ h(x) = \sqrt{k(x)}. $$

Clearly,

$$ h(x) = \begin{cases} h^- = \sqrt{k^-} & \text{if } x < 0, \\ h^+ = \sqrt{k^+} & \text{if } x > 0, \end{cases} $$

and $h^- > h^+ > 0$.

For given $\epsilon > 0$, we approximate the interface $x = 0$ by the interval $[-\epsilon, \epsilon]$ (the thin layer) and h by a smooth function h_ϵ, such that h_ϵ is monotonic in the small interval $[-\epsilon, \epsilon]$. Specifically, the discontinuous function h is now approximated by the smooth function h_ϵ, such that

$$h_\epsilon(x) = \begin{cases} h^-, & \text{for } x < -\epsilon, \\ \hat{h}(\frac{x}{\epsilon}), & \text{for } -\epsilon < x < \epsilon, \\ h^+, & \text{for } x > \epsilon \end{cases}$$

The function \hat{h} is smooth and monotonic on $[-\epsilon, \epsilon]$ (see Figure 1). With the given ϵ the solution corresponding to the regularized problem is denoted by s_ϵ, the corresponding flux by F_ϵ. In the expression for the flux, we replace h by h_ϵ. By taking $y = \frac{x}{\epsilon}$ we rescale $[-\epsilon, \epsilon]$ to $[-1, 1]$. We define $v_\epsilon(y, t) = v_\epsilon(\frac{x}{\epsilon}, t) = s_\epsilon(x, t)$, and investigate its behavior when $\epsilon \searrow 0$. First, for $x \in [-\epsilon, \epsilon]$ (and thus $y \in [-1, 1]$), from (8) one gets

$$\frac{\partial}{\partial t} v_\epsilon(y, t) + \frac{1}{\epsilon} \frac{\partial}{\partial y} F_\epsilon(y, t) = 0.$$

Assuming $\frac{\partial v_\epsilon}{\partial t}$ bounded uniformly with respect to ϵ, passing ϵ to 0 gives $\lim_{\epsilon \searrow 0} \frac{\partial F_\epsilon}{\partial y} (y, t) = 0$, implying

$$\lim_{\epsilon \searrow 0} F_\epsilon(-1, t) = \lim_{\epsilon \searrow 0} F_\epsilon(1, t).$$

In fact, this is nothing but the flux continuity at the interface, which is as expected.

For the second condition we consider again $y \in [-1, 1]$. From (9), one has

$$F_\epsilon - qf_\omega(v_\epsilon) = h_\epsilon^2 \frac{\lambda(v_\epsilon)}{h_\epsilon} \frac{1}{\epsilon} \left(\frac{J(v_\epsilon)}{h_\epsilon} - \tau \frac{\partial v_\epsilon}{\partial t} \right).$$
As before, let now $\epsilon \searrow 0$, assume that $v(\epsilon, y, t) \to v(y, t)$ and that during the limit process, the flux F_ϵ is bounded uniformly in ϵ. Then, this gives

$$\lambda(v) \frac{\partial}{\partial y} \left(\frac{J(v)}{h(y)} - \tau \frac{\partial v}{\partial t} \right) = 0, \quad \text{in } \Omega,$$

(11)

where Ω denotes the strip $\Omega = \{(y, t) : -1 < y < 1, \ t > 0\}$ (see Figure 2).

Along the boundary of Ω, we define

$$s^-(t) := s(0^-, t) = v(-1, t), \quad \text{for } t > 0,$$

$$s^+(t) := s(0^+, t) = v(1, t),$$

The goal is to understand how $s^-(t)$ and $s^+(t)$ are related, as well as $p^-(t) = \frac{J(s^-(t))}{h} - \tau \frac{\partial s^-(t)}{\partial t}$, $p^+(t) = \frac{J(s^+(t))}{h} - \tau \frac{\partial s^+(t)}{\partial t}$. These are nothing but the left and right saturation and pressure at the interface. Note that (11) is an ordinary differential equation in t, where y can be seen as a parameter. To define an initial condition, we let $s_0(y)$ be a smooth function $s_0 : [-1, 1] \to \mathbb{R}$ satisfying $s_0(-1) = s^-(0)$ and $s_0(+1) = s^+(0)$. Clearly, the choice of s_0 is not unique. Below we investigate the relation between $s^-(t)$ and $s^+(t)$, and its dependence in the choice of s_0 and the regularization of h. Since $\lambda(v) > 0$, for $0 < v < 1$, and $\lambda(0) = \lambda(1) = 0$, from (11), one has

$$v = 0, \quad \text{or } v = 1,$$

or if $0 < v < 1$,

$$\frac{\partial}{\partial y} \left(\frac{J(v)}{h(y)} - \tau \frac{\partial v}{\partial t} \right) = 0.$$

(12)

In other words

- $\frac{J(v)}{h(y)} - \tau \frac{\partial v}{\partial t}$ is constant in y, whenever $0 < v < 1$,
- $v(y, \cdot)$ is continuous with respect to t, for $t \geq 0$.

For the sake of understanding, we consider some particular cases.
3.1 Constant saturation at the coarse side of the interface

We let \(s^- \in (0, 1) \) and assume \(s^-(t) = s^- \) for all \(t \). Let \(s_0 : [-1, 1] \to (0, 1) \) be the given initial value, not necessarily compatible to \(s^- : s_0(-1) \neq s^- \) in general. We construct a solution for which the set \(\Omega_c = \{ (y, t) \in \Omega, 0 < v(y, t) < 1 \} \) is connected. From (12), if \((y, t) \in \Omega \), \(v \) solves the autonomous initial value problem:

\[
\begin{cases}
\frac{\partial v}{\partial t} = \frac{1}{h(y)} \left(J(v) - \frac{h(y)}{h^-} J(s^-) \right), & \text{for } t > 0, \\
v(y, 0) = s_0(y).
\end{cases}
\]

(13)

By \((A1)\) and the assumption on \(h \), \((P_y)\) has a unique solution locally. Let \(s^+ \) be defined by

\[
\frac{J(s^-)}{h^-} = \frac{J(1)}{h^+}.
\]

(14)

We consider the cases \(s^- > s^+ \) and \(s^- \leq s^+ \), separately.

- **Case 1:** \(s^- > s^+ \)

Note that

\[
\frac{J(s^-)}{h^-} < \frac{J(s^+)}{h^-} = \frac{J(1)}{h^+}.
\]

Since \(h \) is decreasing function in \(y \), there exists a unique \(y^* \in (-1, 1) \) such that

\[
\frac{J(s^-)}{h^-} = \frac{J(1)}{h(y^*)} < \frac{J(1)}{h^+}.
\]

(15)

We study now the long time behavior of \(v(y, t) \). We distinguish the following sub-cases.

a) For \(y \in (-1, y^*] \), define \(s^\infty(y) \) as the unique solution of

\[
\frac{J(s^\infty(y))}{h(y)} = \frac{J(s^-)}{h^-}.
\]

(16)

Clearly, \(s^\infty(y) \) is the equilibrium point for \((P_y)\) and satisfies \(s^\infty > s^- \) (see Figure 3).

Further, standard phase plane arguments show that, regardless of \(s_0(y) \in (0, 1) \), \(\lim_{t \to \infty} v(y, t) = s^\infty(y) \). If \(s_0(y) > s^\infty(y) \), the solution \(v(y, t) \) decreases continuously from \(v(y, 0) = s_0(y) \) to \(v(y, \infty) = s^\infty(y) \). If \(s_0(y) < s^\infty(y) \), the solution \(v(y, t) \) increases continuously from \(v(y, 0) = s_0(y) \) to \(v(y, \infty) = s^\infty(y) \). Note that \(s^\infty(-1) = s^- \), and that \(s^\infty(y) \) is strictly increasing in \(y \) up to \(s^\infty(y^*) = 1 \). For \(y > y^* \), we have \(s^\infty(y) = 1 \).

b) For \(y > y^* \), one has

\[
\frac{\tau}{h(y)} = \frac{J(1)}{h(y)} \geq \frac{J(1)}{h(y)} = \frac{J(s^-)}{h^-} > 0.
\]

(17)

This implies the solution \(v(y, t) \) increases in \(t \) and reaches \(v = 1 \) in finite positive time (see Figure 4)

\[
0 < t^*(y) < \frac{\tau(1 - s_0(y))}{\frac{J(1)}{h(y)} - \frac{J(s^-)}{h^-}}.
\]

Note: if \(s_0(y) \) is non-decreasing, then \(t^*(y) \) is decreasing to \(t^*(1) > 0 \). The long time behavior of \(v \) is summarized in
Proposition 1 Assume $s_0(y) \in (0, 1)$ for all $y \in [-1, 1]$ and let $s^- > s^*$, where s^* is defined in (14). With y^* in (15), one has:

a) if $y \in [-1, y^*)$ then $\lim_{t \to \infty} v(y,t) = s^\infty(y)$, where $s^\infty(y) \in (0, 1]$ is given by (16). Further, $s^\infty(\cdot)$ is strictly increasing from $s^- = s^\infty(-1)$ to $1 = s^\infty(y^*)$;

b) if $y \in (y^*, 1]$, then there exists $t^*(y) > 0$ such that $v(y, \cdot)$ is increasing in t for all $t < t^* < \infty$, and $v(y, t) = 1$ for all $t \geq t^*(y)$. Moreover, if $s_0(\cdot)$ is non-decreasing, then $t^*(\cdot)$ is decreasing to $t^*(1) > 0$.

Corollary 1 In particular, at $y = 1$, we have for $s^+(t) = v(1,t)$, $s^+(t)$ increases to 1 for $t \in (0, t^*(1))$, where $0 < t^*(1) < \tau(1-s_0(y))/(J(1)h^- - J(s^-)h^-)$, $s^+(t) = 1$ for $t \geq t^*(1)$, as presented in Figure 5.
Figure 5 Behavior of $s^+(t)$ for $t > 0$: s^+ is increasing to 1 for $t < t^*_1$, and $s^+(t) = 1$ for $t \geq t^*_1$.

This allows constructing an extended pressure condition, similar to [12]. Consider the pressure

$$p(y, t) := \frac{J(v(y, t))}{h(y)} - \tau \frac{\partial v}{\partial t}, \quad (18)$$

observe that

$$p(-1, t) = p^-(t) = \frac{J(s^-)}{h^-}, \quad \text{and} \quad p(+1, t) = p^+(t) = \frac{J(s^+)}{h^+} - \tau \frac{\partial s^+}{\partial t}.$$

With the entry pressure

$$p_e^+ := \frac{J(1)}{h^+}, \quad (19)$$

since $s^- > s^*$, one has

$$\frac{J(s^-)}{h^-} < p_e^+.$$

By Corollary 1, we obtain the condition:

$$\begin{cases}
p^-(t) = p^+(t), & \text{for } 0 < t < t^*_1, \\
 s^+(t) = 1, & \text{for } t \geq t^*_1. \end{cases} \quad (20)$$

In other words, the pressure remains continuous for $t < t^*_1$ and oil keeps flowing into the fine material although p^- is below the entry pressure. This effect is due to incorporating dynamic effects in the phase pressure difference, and would not be possible in their absence ($\tau = 0$).

- **Case 2: $s^- < s^*$**

For any $y \in [-1, 1]$, with $s^\infty(y)$ defined by (16), one has

$$\frac{J(s^\infty(y))}{h(y)} = \frac{J(s^-)}{h^-} > \frac{J(s^*)}{h^-} = \frac{J(1)}{h^+}. \quad (21)$$
Therefore, there exists an \(\tilde{s} \in (s^-, 1) \), such that
\[
\frac{J(s^\infty(y))}{h(y)} = \frac{J(s^-)}{h^-} = \frac{J(\tilde{s})}{h^+},
\]
which, in view of the monotonicity of \(h \) and \(J \), gives \(s^\infty < \tilde{s} < 1 \). Consequently, this case is similar to the sub-case \(y < y^* \) before.

Proposition 2 Assume \(s_0(y) \in (0, 1) \) for all \(y \in [-1, 1] \) and let \(s^- < s^* \) (see (14)). Then,
\[
\lim_{t \to \infty} v(y, t) = s^\infty(y) \quad \text{for all } y \in (-1, 1),
\]
with \(s^\infty(y) \) given by (16). In particular, for \(y = 1 \), one can define \(s_+^\infty = s^\infty(1) \) as the unique solution of
\[
\frac{J(s^\infty)}{h^+} = \frac{J(s^-)}{h^-}.
\]

Corollary 2 At \(y = 1 \), we have for \(s^+(t) = v(1, t) \):
\[
\lim_{t \to \infty} s^+(t) = s_+^\infty \in (0, 1).
\]

In other words, the pressure remains continuous at the interface for all \(t > 0 \):
\[
p^+(t) = \frac{J(s^+(t))}{h^+} - \frac{\partial s^+}{\partial t} = \frac{J(s^-)}{h^-} = p^-.
\]

Note that unlike in (20), the pressure remains continuous for all \(t > 0 \).

All results refer to the case \(J(1) > 0 \), hence to the entry pressure model. If instead, \(J(1) = 0 \) (no entry pressure), \(s^* = 1 \) and the analysis before leads to \(s^- < 1 \), and \(p^-(t) = p^+(t) \) for all \(t > 0 \) (see [20]).

Another special case is when \(\tau \searrow 0 \). Then, the time \(t^*(y) \) in Proposition 1 and Corollary 1 approaches to 0, and if \(s^- > s^* \) the pressure becomes discontinuous instantaneously. This is, in fact, exactly the behavior in [12] for equilibrium models.

3.2 Non-constant saturation at the coarse side of the interface

The results before are obtained for a constant saturation at the coarse side of the interface. Here we generalize these results. We let \(p^+(t) = \frac{J(s^+(t))}{h^+} - \tau \frac{\partial s^+}{\partial t} \) be the phase pressure difference at the two sides of the interface and derive an extended pressure condition similar to (20) and (22). With the entry pressure \(p^+_e \) defined in (19), we assume \(p^-(t) \) given, and distinguish the following cases.

- **Case 1:** \(p^-(t) > p^+_e \) for all \(t > 0 \)

 Again, for \(y \in (-1, 1) \), \(v(y, t) \) solves
 \[
 (P_y) \begin{cases}
 \frac{J(v(y, t))}{h(y)} - \tau \frac{\partial v}{\partial t} = p^-(t), & \text{for } t > 0, \\
 v(y, 0) = s_0(y).
 \end{cases}
 \]

 Assume \(s_0(y) \in (0, 1) \), then the equation holds in the neighborhood of \(t = 0 \). We show that in this case, \(v(y, t) < 1 \) for any \(t \), and hence \(p^- = p(y, t) \), for any \(y \in (-1, 1) \). Assume \(v(y, t^*) = 1 \) for some \(t^* < \infty \). For \(t < t^* \) one has
 \[
 \tau \frac{\partial v}{\partial t} = \frac{1}{h(y)} \left(J(v(y, t)) - h(y)p^-(t) \right).
 \]
By the monotonicity of \(h \),
\[
h(y)p^-(t) > h^+ p^-(t) > h^+ p^+_e = J(1),
\]
implies that, at \(t = t^* \), one has
\[
\tau \frac{\partial v}{\partial t}(t^*) = \frac{J(1)}{h(y)} - p^-(t) < 0.
\]

This shows that \(v(y, \cdot) \) cannot grow to 1 for \(t > t^* \). Therefore no finite \(t^* \) exists, such that \(v(y, t^*) = 1 \), implying \(v(y, t) \in (0, 1) \) for all \(t \). We have proved

Proposition 3 Assume \(s_0(y) \in (0, 1) \) for all \(y \in [-1, 1] \) and let \(p^-(t) > p^+_e \) for all \(t > 0 \). Then for all \(y \in [-1, 1] \) and \(t > 0 \), one has \(v(y, t) \in (0, 1) \).

Corollary 3 At \(y = 1 \), we get \(s^+(t) = v(1, t) \in (0, 1) \) for all \(t > 0 \), and therefore the pressure remains continuous at both sides of the interface for all \(t > 0 \)
\[
p^-(t) = p^+(t).
\]

As in Section 3.1, if the model involves no entry pressure \((J(1) = 0)\), one has \(p^+_e = 0 \). Then \(p^-(t) \geq p^+_e = 0 \), and the pressure is continuous for all \(t > 0 \).

- **Case 2:** \(0 < p^-(t) < p^+_e \) for all \(t > 0 \)

We first assume that an \(\epsilon \) exists such that \(0 < p^-(t) < p^+_e - \epsilon \) for all \(t > 0 \). We have

Proposition 4 If an \(\epsilon \) exists such that \(0 < p^-(t) < p^+_e - \epsilon \) for all \(t > 0 \), then there exists a \(t^* > 0 \) such that
\[
\begin{align*}
 &p^-(t) = p^+(t), \quad \text{for } 0 < t < t^*, \\
 &s^+(t) = 1, \quad \text{for } t \geq t^*.
\end{align*}
\]

Proof As before, let \(s_0 : (-1, 1) \to \mathbb{R} \) be such that \(s_0(y) \in (0, 1) \) for all \(y \). Then, for \(t \) small enough, \(v(y, t) < 1 \), and \(v(y, t) \) is a solution to
\[
(P_y) \begin{cases}
 J(v(y, t)) = \frac{h(y)}{h(y)} \frac{\partial v}{\partial t} = p^-(t), & \text{for } t > 0, \\
 v(y, 0) = s_0(y).
\end{cases}
\]

Since \(p^-(t) < p^+_e - \epsilon \), by the continuity of \(h \), there exists \(\delta > 0 \) such that
\[
\frac{h(y)}{h^+} p^-(t) < p^+_e - \epsilon / 2, \quad \text{for } 1 - \delta < y < 1.
\]

Hence, for \(y \in (1 - \delta, 1) \) and \(t > 0 \), we have
\[
J(v) - h(y)p^-(t) > J(v) - h^+ p^+_e + \epsilon h^+ / 2 = J(v) - J(1) + \epsilon h^+ / 2.
\]

This implies
\[
\tau h(y) \frac{\partial v}{\partial t} > J(v) - J(1) + \epsilon h^+ / 2 > \epsilon h^+ / 2.
\]

Clearly, a finite \(t = t(y) > 0 \) exists such that, \(v(y, t(y)) = 1 \), and \(v(y, t) \) for \(t < t(y) \). Letting now \(y = 1 \), there exists \(t^* > 0 \), such that \(s^+(t) = v(1, t) < 1 \) for \(0 < t < t^* \), and \(s^+ = v(1, t) = 1 \) for \(t \geq t^* \), and the proposition is proved.
Remark 1

In fact, the argument above is an alternative proof for Proposition 4. Since \(s^+(t) = v(1, t) > w(1, t) \), and \(w(1, t(1)) = 1 \) for \(t(1) < \infty \), (25) follows immediately.

Based on the analysis before, we discuss particular examples where oil trapping may occur. In the transition region (the blown up interface) \(\Omega = \{(y, t) : -1 < y < 1, t > 0\} \), we have

\[
\begin{align*}
\lambda(v) \frac{\partial u}{\partial y} (y, t) &= \frac{J(v)}{h(y)} - \tau \frac{\partial v}{\partial y}, \\
p(t) &= p^-(t), \quad t > 0, \\
v(y, 0) &= s_0(y), \quad -1 < y < 1,
\end{align*}
\]

which implies that either \(v = 0 \) or \(v = 1 \), or

\[
h(y) \tau \frac{\partial v}{\partial y} = J(v) - h(y)p^-(t). \tag{27}
\]

To understand the trapping, we now take \(s_0(y) = 1 \), for \(-1 < y < 1\), and give the pressure at the coarse side of the interface for \(t > 0 \). We assume the following behavior (see Figure 7):

a) There exists \(T_1 > 0 \) such that \(0 < p^-(t) < p^-_e \) for \(t \in (0, T_1) \), where \(p^-_e = \frac{f(l(1))}{\bar{\lambda}} \).
In this case we have

\[J(1) - h(y)p^-(t) = h^-p^-_e - h(y)p^-(t) > 0. \]

Let \(y \in [-1, 1] \), assuming that a \(\bar{t} \in (0, T_1) \) exists such that \(v(y, t) = 1 \) for all \(t < \bar{t} \) and \(v(y, \bar{t}) < 1 \) then one has

\[\frac{\partial v}{\partial \bar{t}} (y, \bar{t}) = \frac{1}{\tau} \left(\frac{J(1)}{h(y)} - p^-(\bar{t}) \right) > 0. \]

This gives a contradiction since \(v(y, 0) = s_0(y) = 1 \). So we obtain \(v(y, t) = 1 \), for \(-1 \leq y \leq 1 \) and \(0 < t < T_1 \).

b) There exists a \(T_2 > T_1 \) such that \(p^-_e < p^-(t) < p^+_e \), for \(t \in (T_1, T_2) \).
Based on the above analysis, we have

\[\frac{J(1)}{h^-} < p^-(t) < \frac{J(1)}{h^+}, \]

For \(T_1 < t < T_2 \), we define \(\tilde{y}(t) \) by

\[h(\tilde{y}(t)) := \frac{J(1)}{p^-(t)}. \]

Note that the definition makes sense, as \(p_e^- < p^-(t) < p_e^+ \) implies \(\frac{1}{h^-} < \frac{p^-(t)}{J(1)} < \frac{1}{h^+} \), and \(h(\cdot) \) is a monotone, continuous interpolation between \(h^+ \) and \(h^- \). Since \(p^- \) is increasing in \([T_1, T_2]\), this implies that \(\tilde{y}(\cdot) \) is increasing and \(\tilde{y}(T_1) = -1, \tilde{y}(T_2) = 1 \). Then, for \(y > \tilde{y}(t) \), we have

\[J(1) - \tilde{y}(t)p^- (t) > J(1) - h(\tilde{y}(t))p^- (t) = 0. \] (28)

Similarly, for \(y < \tilde{y}(t) \), we have

\[J(1) - h(y)p^- (t) < 0. \] (29)

Furthermore, since \(v(y, T_1) = 1 \) for all \(y \in (-1, 1) \), from (28), (29), one get for all \(t \in (T_1, T_2) \)

\[v(y, t) = 1, \quad \text{for } y > \tilde{y}(t), \quad \text{and } v(y, t) < 1, \quad \text{for } y < \tilde{y}(t). \]

Thus \(y = \tilde{y}(t) \) defines a free boundary in the transition region, separating regions where \(v = 1 \) from regions where \(v < 1 \).

Remark 2 In this context, for \(t < T_2 \) one has \(s^+(t) = v(1, t) = 1 \), and oil remains trapped in the coarse medium at the interface.

c) There exists \(T_3 > T_2 \) such that \(p^- > p_e^+ \) for \(t \in (T_2, T_3) \).

Based on the above analysis, we have \(v(y, T_2) < 1 \) for all \(y \leq 1 \), since \(\tilde{y}(T_2) = 1 \). Further, one also has

\[J(1) - h(y)p^- (t) < J(1) - h(y)p_e^+ < J(1) - h^+ p_e^+ = 0. \]

As before, one cannot obtain \(v(y, \tilde{t}) = 1 \) for some \(\tilde{t} > T_2 \), since at \(\tilde{t} \), it holds

\[\frac{\partial v}{\partial t} (y, \tilde{t}) = \frac{1}{\tau} \left(\frac{J(1)}{h(y)} - p^- (\tilde{t}) \right) < 0. \]

Therefore, \(v(y, t) < 1 \) for \(-1 < y < 1 \) and \(T_2 < t < T_3 \). Consequently, we have

\[p^- (t) = p^+ (t) \quad \text{for } T_2 < t < T_3. \]

Remark 3 Next to the pressure continuity, this shows that oil starts flowing into the fine region for \(t > T_2 \).

d) For all \(t > T_3, p^- < p_e^+ \).

We assume \(p^- (\cdot) \) decreasing and \(\lim_{t \to \infty} p^- (t) = p^\infty \in (p_e^-, p_e^+) \). Given \(y \in [-1, 1] \), we compare the solution \(v(y, t) \) and \(w(y, t) \) of

\[h(y)\tau \frac{\partial v}{\partial t} = J(v) - h(y)p^- (t), \]
\[h(y)\tau \frac{\partial w}{\partial t} = J(w) - h(y)p^\infty, \]

for all \(t > T_3 \), with \(v(y, T_3) = w(y, T_3) < 1 \).
Since J is decreasing and $p^-(t) > p^\infty$, one gets $v(y, t) \leq w(y, t)$ for $-1 < y < 1, t > T_3$. Further, there exists $y^* \in (-1, 1)$ such that

$$h(y^*) = \frac{J(1)}{p^\infty} \in (h^+, h^-).$$

This gives for $y > y^*$

$$J(1) - h(y)p^\infty > 0.$$

As before, there exists $t(y) < \infty$, such that $w(y, t) = 1$ for $t > t(y)$. Similarly, for $y < y^*$, one has

$$J(1) - h(y)p^\infty < 0,$$

implying $w(y, t) < 1$ for all $t > T_3$. In this case,

$$\lim_{t \to \infty} w(y, t) = s^\infty(y),$$

where $s^\infty(y)$ is defined by

$$J(s^\infty(y)) = h(y)p^\infty.$$

Observe that, since $h(y) > h(y^*)$, $J(s^\infty(y)) = \frac{h(y)}{h(y^*)}J(1) > J(1)$, so $s^\infty(y) \in (0, 1)$. For $y = -1$, one has

$$J(s^\infty(-1)) = \frac{h^-}{h(y^*)}J(1) < \frac{h^-}{h^+}J(1) = J(s^*),$$

giving $s^\infty(-1) > s^*$. Further, if $p^\infty = p_+^e = \frac{J(1)}{h^+}$, then $s^\infty(-1) = s^*$.

This analysis shows that, if $p^-(t)$ behaves as in Figure 7, and $p^\infty \in (p_-^e, p_+^e)$, a $T^* < \infty$ exists such that $s^+(t) = 1$, for $t > T^*$, and $p^-(t) = p^+(t)$ for $t < T^*$. This means up to T^*, oil flows into the fine material, while trapping occurs for $t > T^*$. This behavior is sketched in Figure 8.

Remark 4 Compared to the equilibrium case ($\tau = 0$), a striking difference appears. If $\tau = 0$ for a pressure $p^-(t)$ behaving as in Figure 7, no oil flows into the fine layer for any $t > T_3$. If $\tau > 0$, oil continues flowing for $t > T_3$ and up to a time $T^* < \infty$, the delay time. This delay appears, as discussed, if $\lim_{t \to \infty} p^-(t) = p^\infty \in (p_-^e, p_+^e)$.

The following result extends the statement in the remark to a more general situation.

Proposition 5 Let $p^-(t) \leq p_+^e$ be such that $\int_0^\infty (p_-^e - p^-(t))dt > \tau$ and let $s_0(y) \in (0, 1)$. Further, let s^+ be the solution of

$$\begin{cases}
 \frac{h^+}{s(t)} \frac{ds^+}{dt} = J(s) - h^+p^-(t), & \text{for } t > 0, \\
 s(t) = s_0.
\end{cases}$$

Then there exists $T^* < \infty$ such that $s_0 < s(t) < 1$ for all $0 < t < T^*$ and $s(T^*) = 1$.

Proof Since $p^-(t) \leq p_+^e = \frac{J(1)}{h^+}$, and $J(s)$ is strictly decreasing, we have

$$J(s) - h^+p^-(t) > 0, \quad \text{for } s \in (0, 1).$$

Therefore $s^+(t)$ is strictly increasing whenever $s^+ < 1$. Furthermore, we have

$$h^+\tau \frac{ds^+}{dt} > h^+(p^+_e - p^-(t)),$$
For convenience, define \(\lim t \) hence, there exists \(t^* < \infty \) for which \(f(t^*) = 1 - s_0 \). Consequently, there exists \(T^* < t^* \) for which \(s^+(T^*) = 1 \), and since \(s^+ \) is increasing, one has \(s_0 < s^+(t) < 1 \) for all \(t < T^* \).

Remark 5 A lower bound for \(s^+ \) is \(w = w(t) \), the solution of
\[
\begin{cases}
h^+\tau \frac{dw}{dt} = J(w) - J(1), & \text{for } t > 0, \\
 w(0) = s_0.
\end{cases}
\]

Since \(J : (0, 1] \to \mathbb{R}^+ \) is locally Lipschitz, then for all \(t > 0 \), \(w(\cdot) \) is strictly increasing, \(w(t) < 1 \), and \(\lim_{t \to \infty} w(t) = 1 \). By a comparison argument, \(s(t) > w(t) \) for all \(t > 0 \).

3.3 Comparison of extended pressure conditions with static case

In this section, we show the difference in the pressure conditions appearing in the equilibrium and non-equilibrium models between static case and dynamic case. As proved in [12], if \(s^- \geq s^+ \), then one has
\[
s^+ = 1,
\]
and no oil flows into the fine medium. Further, if \(s^- < s^+ \), then \(s^+ < 1 \), but the pressure continuous:
\[
[p] = p^-(t) - p^+(t) = 0.
\]

Then oil flows into the fine medium.

Conversely, given \(p^-(t) = \frac{J(s^-)}{h^-} \) the pressure at the interface on the coarse side and assuming that
\[
p^-(t) \leq p^+_c = \frac{J(1)}{h^+},
\]
it implies
\[
J(s^-) \leq \frac{h^-}{h^+} J(1) = J(s^+),
\]
and therefore \(s^- \geq s^+ \). In this case, one also has \(s^+ = 1 \).

Similarly, \(p^-(t) > p^+_c \) implies \(s^- < s^+ \), and the pressure is continuous:
\[
p^-(t) = p^+(t).
\]

Referring to Figure 7, if \(p^- (t) \geq p^+_c \) for \(t > T_2 \), the matching conditions in static and dynamic case are the same. Specifically, \(s^+ = 1 \) for \(t < T_2 \), and \(p^-(t) = p^+(t) \) for \(t \in (T_2, T_3) \). Assuming now \(p^- (t) \) is decreasing for \(t > T_3 \), with \(p^-(T_3) = p^+_c \) and \(\lim_{t \to \infty} p^- (t) = p^\infty \in (p^-_c, p^+_c) \), we have (also see Figure 8):
\[
s^+ (t) = 1, \text{ for } t > T_3 \text{ in the equilibrium case } \tau = 0,
\]
\[
s^+ (t) < 1, \text{ for } t \in (T_3, T^*), \text{ and } s^+(t) = 1 \text{ for } t \geq T^* \text{ in the non-equilibrium case}.
\]
In other words, a delay \((T^* - T_3)\) appears in the non-equilibrium case before trapping occurs.

In fact, this delay can be infinite an extreme situation, when \(s(t) < 1\) for all \(t > 0\), can be constructed. To see this, we assume \(J : (0, 1] \rightarrow \mathbb{R}\) locally Lipschitz, and study the behavior of \(s^+\) solving

\[
\begin{cases}
h^+ \tau \frac{ds^+}{dt} = J(s) - h^+ p^-(t), & \text{for } t > 0, \\
 s(0) = s_0 \in (0, 1),
\end{cases}
\]

with appropriately chosen \(p^-\) satisfying \(p^- < p^+\) for all \(t > 0\).

First, note that an \(L > 0\) exists such that for all \(s \in [s_0, 1]\)

\[
0 \leq J(s) - J(1) \leq L (1 - s).
\]

Hence, an upper bound to \(s^+\) is the solution \(u\) of

\[
\begin{cases}
\tau \frac{du}{dt} - \frac{L}{h^+} (1 - u) + (p^+_e - p^-(t)), & \text{for } t > 0, \\
u(0) = s_0.
\end{cases}
\]

Let now \(v = 1 - u\). Then

\[
\tau \frac{dv}{dt} + \frac{L}{h^+} v = -(p^+_e - p^-(t)), \quad t > 0.
\]

This gives

\[
v(t) = (1 - s_0) e^{-\frac{L}{h^+}t} - \frac{1}{\tau} \int_0^t e^{\frac{L}{h^+}(z-t)} (p^+_e - p^-(z))dz,
\]

and the upper bound for \(s^+\) reads

\[
u(t) = 1 - (1 - s_0) e^{-\frac{L}{h^+}t} + \frac{1}{\tau} \int_0^t e^{\frac{L}{h^+}(z-t)} (p^+_e - p^-(z))dz.
\]

Thus, if \(p^-(t) < p^+_e\) is such that

\[
\int_0^\infty e^{\frac{L}{h^+}z} (p^+_e - p^-(z))dz < (1 - s_0)\tau,
\]

we obtain \(s^+(t) < 1\) for all \(t > 0\), and consequently, the pressure remains continuous for all \(t > 0\), whereas oil flows into the fine layer.

4 Numerical method and examples

In this section, we provide some numerical examples to illustrate how the dynamic effects influence the flow of the oil across the interface between two homogeneous blocks. For simplicity, in (8)-(9), we take \(\phi = 1\). This gives

\[
\frac{\partial s}{\partial t} + \frac{\partial F}{\partial x} = 0,
\]

\[
F = q f_w(s) + h^2 \lambda(s) \frac{\partial}{\partial x} \left(\frac{J(s)}{h(x)} - \tau \frac{\partial s}{\partial t} \right),
\]

for \(t > 0\), and \(x \in (-l, l)\). The boundary and initial conditions are given below.
For the discretization of (30) and (31) we decompose the interval \((-l, l)\) into \(2N + 1\) cells:
\[-l = x_{-N-1/2} < x_{-N+1/2} < \ldots < x_{-1/2} < x_{1/2} < \ldots < x_{N-1/2} < x_{N+1/2} = l,\]
where the grid is uniform with \(\Delta x = \frac{2l}{2N+1}\), we let \(x_j = j\Delta x\) for \(j \in \{-N+1/2, \ldots, N+1/2\}\). The discontinuity of \(h(x)\) is at \(x = 0\). With \(\Delta t > 0\) a given time step, the fully discrete scheme is:

\[
\frac{s_{i-1/2}^n - s_{i-1/2}^{n-1}}{\Delta t} = -\frac{F_i^n - F_{i-1}^n}{\Delta x},
\]

where \(s_{i-1/2}^{n-1}\) is the approximation of \(s(x, t)\) at \(x = x_{i-1/2}\) and at \(t = t^n = n\Delta t\). Since \(q > 0\), if \(i \neq 0\) the upwind flux \(F_i^n\) at \(x = i\Delta x\) and \(t = t^n\) is defined as

\[
F_i^n = q f_w(s_{i-1/2}^{n-1}) + h^+/\lambda \left(\frac{s_{i-1/2}^{n-1} + s_{i+1/2}^{n-1}}{2} \right) \cdot \left(f' \left(\frac{s_{i-1/2}^{n-1} + s_{i+1/2}^{n-1}}{2} \right) \frac{s_{i+1/2}^{n-1} - s_{i-1/2}^{n-1}}{\Delta x} \right) - h^+/\tau \left(\frac{s_{i+1/2}^{n-1} - s_{i-1/2}^{n-1}}{\Delta t} - \frac{s_{i+1/2}^{n-1} - s_{i-1/2}^{n-1}}{\Delta t} \right),
\]

where \(h^+/\lambda\) means \(h^-\) if \(i < 0\), or \(h^+\) if \(i > 0\).

At \(i = 0\), we introduce two saturation unknowns \(s^{-n}, s^{+n}\) and define the \(F^{-n}\), and \(F^{+n}\) as

\[
F^{-n} = q f_w(s_{-1/2}^{n-1}) + h^-\lambda \left(\frac{s_{-1/2}^{n-1} + s_{-1/2}^{-n-1}}{2} \right) \cdot \left(f' \left(\frac{s_{-1/2}^{n-1} + s_{-1/2}^{-n-1}}{2} \right) \frac{s_{-1/2}^{-n-1} - s_{-1/2}^{n-1}}{\Delta x/2} \right),
\]

\[
F^{+n} = q f_w(s_{+1/2}^{n-1}) + h^+\lambda \left(\frac{s_{+1/2}^{n-1} + s_{+1/2}^{+n-1}}{2} \right) \cdot \left(f' \left(\frac{s_{+1/2}^{n-1} + s_{+1/2}^{+n-1}}{2} \right) \frac{s_{+1/2}^{+n-1} - s_{+1/2}^{n-1}}{\Delta x/2} \right).
\]
At the interface we also define the left and right discretized pressures
\[p^{+,n} = \frac{J(s^{+,n})}{h^+} - \tau \frac{s^{+,n} - s^{+,n-1}}{\Delta t}, \quad \text{and} \quad p^{-,n} = \frac{J(s^{-,n})}{h^-} - \tau \frac{s^{-,n} - s^{-,n-1}}{\Delta t}. \]

By using the extended pressure condition discussed before one has
\[(p^{-,n} - p^{+,n})(1 - s^{+,n}) = 0. \tag{32} \]

Defining
\[g(s^{-,n}, s^{+,n}) = \frac{J(s^{-,n})}{h^-} - \frac{J(s^{+,n})}{h^+} - \tau \frac{s^{-,n} - s^{+,n}}{\Delta t}, \]
and
\[C^{n-1} := C(s^{-,n-1}, s^{+,n-1}) = \frac{\tau}{\Delta t} (s^{+,n-1} - s^{-,n-1}), \tag{33} \]
(32) implies either \(s^{+,n} = 1 \), or the pressure continuity
\[g(s^{-,n}, s^{+,n}) - C(s^{-,n-1}, s^{+,n-1}) = 0. \]

Obviously, \(\partial_1 g > 0 \) and \(\partial_2 g < 0 \). Further, given \(s^{-} \in (0, 1) \), one has
\[\lim_{s^{+,n} \searrow 0} g(s^{-}, s^{+}) = +\infty, \]
and
\[g(s^{-}, 1) = \frac{J(s^{-})}{h^{-}} - \frac{J(1)}{h^{+}} + \tau \frac{1 - s^{-}}{\Delta t} \leq \frac{J(1)}{h^{-}} - \frac{J(1)}{h^{+}}, \]

since \(g(s^{-}, \cdot) \) is strictly increasing and continuous. For any \(C^{n-1} \in (-\infty, g(s^{-}, 1)] \) there exists a unique \(s^{+} = s^{+}(s^{-}) \) such that
\[g(s^{-}, s^{+}(s^{-})) = C^{n-1}. \]

Also, note that \(g(s^{-}, 1) \) is decreasing in \(s^{-} \),
\[\lim_{s^{-} \searrow 0} g(s^{-}, 1) = +\infty, \quad g(1, 1) = \frac{J(1)}{h^{-}} - \frac{J(1)}{h^{+}}, \]
and therefore \(g(\cdot, 1) : (0, 1] \to [g(1, 1), +\infty) \) is one to one. Recalling that \(g(s^{-}, s^{+}) = C^{n-1} \) appears, in fact, in the discretized extended pressure condition (32), for given \(s^{-} \) and \(C^{n-1} > g(s^{-}, 1) \) when pressure becomes discontinuous at the interface, one considers the pair \((s^{-}, 1)\). In this way, we have actually constructed the curves in the \((0, 1] \times (0, 1]\) square:

if \(C^{n-1} > g(1, 1) \), then \(\Gamma(C^{n-1}) = \left\{ (s^{-}, s^{+})/s^{-} \in (0, D(C^{n-1})], g(s^{-}, s^{+}) = C^{n-1} \right\} \)
\[\cup \left\{ (s^{-}, 1)/s^{-} \in (D(C^{n-1}), 1], g(s^{-}, s^{+}) = C^{n-1} \right\}. \tag{34} \]

if \(C^{n-1} \leq g(1, 1) \), then \(\Gamma(C^{n-1}) = \left\{ (s^{-}, s^{+})/s^{-} \in (0, 1], g(s^{-}, s^{+}) = C^{n-1} \right\} \),

where \(D(\cdot) \) is the inverse of \(g(\cdot, 1) \).

Below we give a property of the discretized extended pressure condition:

Proposition 6 If \(\frac{\tau}{\Delta t}(s^{+,n-1} - s^{-,n-1}) > \frac{J(1)}{h^{-}} - \frac{J(1)}{h^{+}} \), then \(\frac{\tau}{\Delta t}(s^{+,n} - s^{-,n}) > \frac{J(1)}{h^{-}} - \frac{J(1)}{h^{+}} \).
Proof If \(p^{-,n} \neq p^{+,n} \), one has \(s^{+,n} = 1 \), and obviously,

\[
\frac{\tau}{\Delta t} (1 - s^{-,n}) \geq 0 > \frac{J(1)}{h^-} - \frac{J(1)}{h^+}.
\]

If \(p^{-,n} = p^{+,n} \), then we have

\[
\frac{J(s^{-,n})}{h^-} - \frac{J(s^{+,n})}{h^+} + \frac{\tau(s^{+,n} - s^{-,n})}{\Delta t} = C^{n-1} \geq \frac{J(1)}{h^-} - \frac{J(1)}{h^+}.
\]

(35)

In this case, if \(s^{+,n} \geq s^{-,n} \), one has

\[
\frac{\tau(s^{+,n} - s^{-,n})}{\Delta t} \geq 0 > \frac{J(1)}{h^-} - \frac{J(1)}{h^+},
\]

otherwise, \(s^{+,n} < s^{-,n} \) implies

\[
\frac{J(s^{-,n})}{h^-} - \frac{J(s^{+,n})}{h^+} < 0.
\]

Together with (35), we yield

\[
\frac{\tau(s^{+,n} - s^{-,n})}{\Delta t} > \frac{J(1)}{h^-} - \frac{J(1)}{h^+},
\]

which concludes the proof.

4.2 Fully implicit scheme

Here a nonlinear, implicit scheme is discussed as an alternative to the linear one. Next to improved stability properties, for this scheme we can prove that \(s^{\pm,n} \), the saturation at the interface, remain between 0 and 1, a property that is not guaranteed for the linear scheme. To construct the scheme we first define the decreasing function \(\beta : \mathbb{R} \rightarrow \mathbb{R} \) by

\[
\beta(s) = \int_0^s \tilde{\lambda}(z)J'(z)dz,
\]

and rewrite the flux in (31) as

\[
F = q f_w(s) + h \frac{\partial \beta(s)}{\partial x} - \tau h^2 \tilde{\lambda}(s) \frac{\partial}{\partial x} \left(\frac{\partial s}{\partial t} \right).
\]

As before, for \(i \neq 0 \) we write

\[
\frac{s_i^n - s_{i-1}^{n-1}}{\Delta t} = - \frac{F_i^n - F_{i-1}^n}{\Delta x},
\]

(36)

but now the upwind flux \(F_i^n \) becomes

\[
F_i^n = q f_w(s_{i-1/2}^n) + h^\pm \frac{\Delta x}{\Delta x} \left(\beta(s_{i+1/2}^n) - \beta(s_{i-1/2}^n) \right)
- \frac{\tau(h^+)^2}{\Delta x \Delta t} \tilde{\lambda}(s_{i+1/2}^{n-1} + s_{i-1/2}^{n-1}/2) (s_{i+1/2}^n - s_{i-1/2}^n) - (s_{i+1/2}^n - s_{i-1/2}^n).
\]
As before, by h^\pm we mean h^- if $i < 0$, or h^+ if $i > 0$. Further, if $i = 0$, the flux is defined on each side of the interface as

$$F^{-,n} = q_f w(s_{n-1/2}^n) + \frac{2h^-}{\Delta x} \left(\beta(s^{-,n}) - \beta(s_{-1/2}^n) \right)$$

$$- \frac{2\tau(h^-)^2}{\Delta x \Delta t} \lambda(s^{-,n-1}) \left((s_{-n}^n - s_{-n-1}^n) - (s_{-1/2}^n - s_{-1/2}^{n-1}) \right),$$

and

$$F^{+,n} = q_f w(s_{n+1/2}^n) + \frac{2h^+}{\Delta x} \left(\beta(s_{+1/2}^n) - \beta(s^{+,n}) \right)$$

$$- \frac{2\tau(h^+)^2}{\Delta x \Delta t} \lambda(s^{+,n-1}) \left((s_{+n+1}^n - s_{n+1}^{n-1}) - (s_{+1/2}^n - s_{+1/2}^{n-1}) \right).$$

For having a conservative scheme, the two expressions should be equal. Combined with the pressure condition (32), and viewing $s_{i+1/2}^n$ as well as the saturation values s_{i+1}^{n-1} and $s_{i+1/2}^{n-1}$ as known, this provides a nonlinear system with s_{i+1}^{n-1} as unknowns. Below we show that this system has a unique solution pair in the square $[0,1]^2$.

The condition $F^{-,n} = F^{+,n}$ can be written as

$${R(s_{-n}^n, s_{+n}^n) = B(s_{-1/2}^n, s_{+1/2}^n),}$$

where

$$R(s_{-n}^n, s_{+n}^n) = q_f w(s_{-1/2}^{n+1}) - \frac{2\tau}{\Delta x} \left(h^+ \beta(s_{n+1/2}^n) + h^- \beta(s_{-1/2}^n) \right)$$

$$+ \frac{2\tau h^+}{\Delta x \Delta t} \left((h^+)^2 \lambda(s_{+n+1}^n)s_{+n}^n - (h^-)^2 \lambda(s_{-n}^n)s_{-n}^n \right),$$

and

$$B = q_f w(s_{-1/2}^n) - \frac{2\tau}{\Delta x} \left(h^- \beta(s_{-1/2}^n) + h^+ \beta(s_{+1/2}^n) \right)$$

$$+ \frac{2\tau h^-}{\Delta x \Delta t} \left((h^-)^2 \lambda(s_{-n-1}^n) s_{-n}^n - (h^+)^2 \lambda(s_{+n-1}^n) s_{+n}^n \right).$$

Using (36), B becomes

$$B = q_f w(s_{-1/2}^n) - \frac{2\tau}{\Delta x} \left(h^- \beta(s_{-1/2}^n) + h^+ \beta(s_{+1/2}^n) \right)$$

$$+ \frac{2\tau h^-}{\Delta x \Delta t} \left((h^-)^2 \lambda(s_{-n}^n) s_{-n}^n - \frac{\Delta t}{\Delta x} (F^{-,n} - F_{-1}^n) \right)$$

$$+ \frac{2\tau h^+}{\Delta x \Delta t} \left((h^+)^2 \lambda(s_{+n}^n) s_{+n}^n - \frac{\Delta t}{\Delta x} (F^{+,n} - F_{+1}^n) \right).$$

Using (36), B becomes

$$B = q_f w(s_{-1/2}^n) - \frac{2\tau}{\Delta x} \left(h^- \beta(s_{-1/2}^n) + h^+ \beta(s_{+1/2}^n) \right)$$

$$+ \frac{2\tau h^-}{\Delta x \Delta t} \left((h^-)^2 \lambda(s_{-n}^n) s_{-n}^n - \frac{\Delta t}{\Delta x} (F^{-,n} - F_{-1}^n) \right)$$

$$+ \frac{2\tau h^+}{\Delta x \Delta t} \left((h^+)^2 \lambda(s_{+n}^n) s_{+n}^n - \frac{\Delta t}{\Delta x} (F^{+,n} - F_{+1}^n) \right).$$

Obviously, R is increasing in both arguments and one has

$$R(0,0) = 0 \leq R(s_{-i}, s_{+i})$$

$$\leq R(1,1) = q - \frac{2\tau}{\Delta x} (h^+ + h^-) \beta(1) + \frac{2\tau}{\Delta x \Delta t} [(h^+)^2 \lambda(s_{+n}^n) + (h^-)^2 \lambda(s_{-n}^n)].$$

Note that, if both s_{-n}^n and s_{+n}^n take the values 0 or 1, the last terms in (39) vanish, giving

$$B = q_f w(s_{-1/2}^n) - \frac{2\tau}{\Delta x} \left(h^- \beta(s_{-1/2}^n) + h^+ \beta(s_{+1/2}^n) \right).$$

Since β is decreasing, in this case one has $0 \leq B \leq R(1,1)$. Further, if s_{-n}^n is not equal to 0 or to 1, with Δt small enough one gets

$$0 \leq s_{-n}^n - \frac{\Delta t}{\Delta x} (F^{-,n} - F_{-1}^n) \leq 1,$$

and analogously for s_{+n}^n. From (39), this shows again that $0 \leq B \leq R(1,1)$. This gives the following:
Lemma 1 For a sufficiently small time step Δt, with $C^{n-1} = C(s^{-,n-1}, s^{+,n-1})$ defined in (33) and for R and B in (37) and (39), the system

\[(g(s^{-,n}, s^{+,n}) - C^{n-1})(1 - s^{+,n}) = 0, \]

has a unique solution pair $(s^{-,n}, s^{+,n}) \in [0, 1]^2$.

Proof The set $\Gamma(C^{n-1})$ introduced in (34) contains pairs satisfying the pressure condition (32). In this set, we seek a pair $(s^{-,n}_0, s^{+,n}_0)$ such that

\[R(s^{-,n}_0, s^{+,n}_0) = B. \]

If such a pair exists, it solves the system (40). Since as g is increasing in the first argument and decreasing in the second one, long as both $s^{-,n}$ and $s^{+,n}$ are below 1, the curve $\Gamma(C^{n-1})$ is a graph of a strictly increasing function (see Figure 9). Similarly, for $B \in [0, R(1,1)]$, the set $R(\cdot, \cdot) = B$ is the graph of a decreasing function in the $s^{-,n} - s^{+,n}$ plane. Therefore, these two curves have at most one intersection point inside the square $[0,1]^2$, implying that (40) has a unique solution pair.

Remark 6 The construction above assumes that $s^{-,n}_{1/2}, s^{+,n}_{1/2}$ are known. In fact, these are part of the solution computed implicitly, at time step t_n. This means that, actually, $s^{-,n}_{1/2}, s^{+,n}_{1/2}$ and consequently B depend on $s^{-,n}, s^{+,n}$. However, decoupling the calculation of the solution pair...
\(s^{\pm,n}\) from the effective time stepping suggests an iterative procedure for the implicit scheme: using, say, the values \(s^{\pm,n-1}\) as starting point, compute \(s_{i+1/2}^n\) by solving (36) away from the interface, and use \(s_{-1/2}^n, s_{1/2}^n\) to update \(s^{\pm,n}\).

4.3 Numerical results

For the numerical calculations, we used the following functions and parameters:

\[
k_{rw}(s) = s^2, \quad k_{rn}(s) = (1 - s)^2, \quad J(s) = s^{-1}, \quad N_c = 1, \quad M = 1, \quad h^- = 1, \quad h^+ = 0.5.
\]

![Figure 10](image)

Figure 10 Initial oil saturation \(s^0_o\).

The tests are done in the interval \((-1, 1)\). Further, we present the results in terms of the oil/nonwetting phase saturation \(s_o = 1 - s\), as this is the phase for which trapping may occur. The initial oil saturation is hat shaped (see Figure 10)

\[
s_o(x, 0) = s^0_o := \begin{cases}
0, & -1 < x < -0.34, \\
0.9, & -0.34 \leq x \leq -0.12 \\
0, & -0.12 < x < 1.
\end{cases}
\]

At \(x = \pm 1\) we take homogeneous boundary conditions, \(\partial_x s(\pm 1, t) = 0\). This mimics the situations when an oil blob in the coarse layer is displaced by water. After a certain time, the oil reaches the interface. Note that initially no oil is present in the fine medium.

Before discussing the results we recall that the saturation \(s^*\) defined in (14) is the limit saturation allowing for pressure continuity in the equilibrium models (\(\tau = 0\)). This also defines an entry saturation for the oil, \(s^{entry} = 1 - s^*\). For the equilibrium model, oil flows into the fine material only if \(s_o > s^{entry}\) at the coarse material side of the interface, and it remains trapped if \(s_o \leq s^{entry}\). Figure 11, displaying the results obtained for \(\tau = 0\) at \(t = 0.7\), confirm this statement. At the coarse side of the interface, one has \(s_o < s^{entry}\) (picture on the left) and the oil flux is 0 there (picture in the middle). This means that no oil enters into the fine medium. Further, the pressure is discontinuous at the interface (picture on the right).

The case \(\tau = 1\), presented in Figure 12, shows a different situation. In the left picture, although \(s_o < s^{entry}\), one still has \(s^+_o > 0\), meaning that oil has already entered in the fine medium. This is also confirmed by the middle picture, displaying a non-zero the oil flux at the interface. Finally, the picture on the right shows that the pressure is continuous.
Figure 11 $\tau = 0$, $t = 0.7$: oil saturation (a), oil flux (b) and phase pressure difference (c).

Figure 12 $\tau = 1$, $t = 0.7$: oil saturation (a), oil flux (b) and phase pressure difference (c).

Figure 13 $\tau = 0$, $t = 4$: oil saturation (a), oil flux (b) and phase pressure difference (c).

Figure 14 $\tau = 1$, $t = 4$: oil saturation (a), oil flux (b) and phase pressure difference (c).

Figure 13 presents the results for $\tau = 0$ and at $t = 4$. Then oil has flown into the fine medium (picture on the left). The flux and the pressure are both continuous (middle and right pictures). At the same time, but with $\tau = 1$, we observe that more oil has flown into the fine media (left picture of Figure 14). As expected, the flux and pressure are continuous as well.
The results above suggest that the amount of oil flowing into the fine material increases with τ. To understand this behaviour we compare the oil saturation obtained for $\tau = 0$, $\tau = 1$ and $\tau = 10$, all at the same time $t = 4$. The profiles in Figure 15 show that, for $\tau = 0$, little oil has flown into the fine media, and this amount is higher for $\tau = 1$. In both cases, s_0^-, the oil saturation at the coarse side of the interface, already exceeds the entry saturation s_{entry}. However, for $\tau = 10$, $s_0^- < s_{\text{entry}}$, but oil has still flown into the fine material. On expects that the oil flow into the fine material will take longer for the largest value of τ, in agreement with Corollary 1.

Finally, we observe that in the equilibrium case $\tau = 0$ one can determine the maximal amount of oil that can be trapped at the interface, see [12]. Having this in mind, we choose again a hat-shaped initial saturation

$$s_o(x, 0) = s_o^0 := \begin{cases}
0, & -1 < x < -0.34, \\
0.4, & -0.34 < x < -0.12 \\
0, & -0.12 < x < 1,
\end{cases}$$

where the total amount of oil equals the maximal amount that can be trapped for equilibrium models. With this initial data, we compute the numerical solutions for three values of τ, namely 0, 10 and 30. Figure 16 shows the results at $t = 400$, when practically all solutions have reached a steady state and no oil flow is encountered anymore.

The left picture shows the result for $\tau = 0$. In this case, the entire amount of oil is trapped in the coarse medium, and the oil saturation s_o^- matches the entry saturation s_{entry}. No oil has flown at all into the fine material. As following from the middle picture, for $\tau = 10$, one has $s_o^- < s_{\text{entry}}$, and the oil remaining trapped in the coarse material is less than in the equilibrium
case. The situation becomes more obvious for the solution corresponding to $\tau = 30$. The oil saturation s^{-}_o has decayed further, and the trapped oil is less than in the previous cases. This is again in agreement with the analysis in Section 3.2.

5 Conclusions

We have considered a non-equilibrium model for two-phase flow in heterogeneous porous media, where dynamic effects are included in the phase pressure difference. A simple situation is considered, where the medium consists of two adjacent homogeneous blocks. We obtain the conditions coupling the models in each of the two sub-domains. The first condition is, as expected, flux continuity, whereas the second is an extended pressure condition extending the results in [14] for the standard two-phase flow model.

In the equilibrium case, if an entry pressure model is considered, oil can flow into the fine material only if its saturation exceeds an entry point. In the non-equilibrium case instead, the non-wetting phase may flow even if the oil saturation at the coarse side of the interface is below the entry point, and amount of oil remaining trapped at the interface is less than in the case of equilibrium models.

Finally, two different numerical schemes are discussed, and different numerical experiments are presented to sustain the theoretical findings.

Acknowledgements The work of X. Cao is supported by CSC (China Scholarship Council). The work of C.J. van Duijn and I.S. Pop is supported by the Shell-NWO/FOM CSER programme (project 14CSER016). Both supports are gratefully acknowledged. We thank Prof. Dr.-Ing. R. Helmig and I. Zizina (both Stuttgart) for the helpful discussions. The authors are members of the International Research Training Group NUPUS funded by the German Research Foundation DFG (GRK 1398), the Netherlands Organization for Scientific Research NWO (DN 81-754) and by the Research Council of Norway (215627).

References

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007/1</td>
<td>Fractional flow formulation for two-phase flow in porous media</td>
<td>Cao, Y. / Eikemo, B. / Helmig, R.</td>
</tr>
<tr>
<td>2008/1</td>
<td>Variational inequalities for modeling flow in heterogeneous porous media with entry pressure</td>
<td>Helmig, R. / Weiss, A. / Wohlmuth, B.</td>
</tr>
<tr>
<td>2008/2</td>
<td>Convergence study and comparison of the multipoint flux approximation L-method</td>
<td>Cao, Y. / Helmig, R. / Wohlmuth, B.</td>
</tr>
<tr>
<td>2008/3</td>
<td>Philip’s redistribution problem revisited: the role of fluid-fluid interfacial areas</td>
<td>van Duijn, C.J. / Pop, I.S. / Niessner, J. / Hassanizadeh, S.M.</td>
</tr>
<tr>
<td>2008/4</td>
<td>Modeling kinetic interphase mass transfer for two-phase flow in porous media including fluid–fluid interfacial area</td>
<td>Niessner, J. / Hassanizadeh, S.M.</td>
</tr>
<tr>
<td>2008/5</td>
<td>A model for two-phase flow in porous media including fluid–fluid interfacial area</td>
<td>Niessner, J. / Hassanizadeh, S.M.</td>
</tr>
<tr>
<td>2008/6</td>
<td>Geometrical interpretation of the multipoint flux approximation L-method</td>
<td>Cao, Y. / Helmig, R. / Wohlmuth, B.</td>
</tr>
<tr>
<td>2008/7</td>
<td>Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework</td>
<td>Vervoort, R.W. / van der Zee, S.E.A.T.M.</td>
</tr>
<tr>
<td>2008/8</td>
<td>Two-phase flow and transport in porous media including fluid–fluid interfacial area</td>
<td>Niessner, J. / Hassanizadeh, S.M.</td>
</tr>
<tr>
<td>2008/10</td>
<td>Comparison of mathematical and numerical models for two-phase flow in porous media</td>
<td>Wolff, M.</td>
</tr>
<tr>
<td>2008/11</td>
<td>Implementation of a numerical model for the convection-enhanced delivery of therapeutic agents into brain tumors</td>
<td>Darcis, M.</td>
</tr>
<tr>
<td>2008/12</td>
<td>Convergence of the multipoint flux approximation L-method for homogeneous media on uniform grids</td>
<td>Cao, Y. / Helmig, R. / Wohlmuth, B.</td>
</tr>
<tr>
<td>2008/13</td>
<td>Development of a multiphase multicomponent model for PEMFC</td>
<td>Ochs, S.O.</td>
</tr>
<tr>
<td>2008/14</td>
<td>Towards a model concept for coupling porous gas diffusion layer and gas distributor in PEM fuel cells</td>
<td>Walter, L.</td>
</tr>
<tr>
<td>2009/1</td>
<td>Streamline approach for a discrete fracture-matrix system</td>
<td>Hægland, H. / Assteerawatt, A. / Helmig, R. / Dahle, H.K.</td>
</tr>
<tr>
<td>2009/3</td>
<td>An unfitted discontinuous Galerkin method for two-phase flow</td>
<td>Heimann, F.</td>
</tr>
<tr>
<td>2009/4</td>
<td>Percolation as a basic concept for macroscopic capillarity</td>
<td>Hilfer, R. / Doster, F.</td>
</tr>
</tbody>
</table>
van Noorden, T.L. / Pop, I.S. / Ebigbo, A. / Helmig, R.: An effective model for biofilm growth in a thin strip

Baber, K.: Modeling the transfer of therapeutic agents from the vascular space to the tissue compartment (a continuum approach)

Faigle, B.: Two-phase flow modeling in porous media with kinetic interphase mass transfer processes in fractures

Fritz, J. / Flemisch, B. / Helmig, R.: Multiphysics modeling of advection-dominated two-phase compositional flow in porous media

Støverud, K.: Modeling convection-enhanced delivery into brain tissue using information from magnetic resonance imaging

Kissling, F. / Rohde, C.: The computation of non-classical shock waves with a heterogeneous multiscale method

Rosenbrand, E.: Modelling biofilm distribution and its effect on two-phase flow in porous media

Schöniger, A.: Parameter estimation by ensemble Kalman filters with transformed data

Lindens, B.: Experimental investigations on horizontal redistribution

Rau, M.T.: Geostatistical analysis of three-dimensional hydraulic conductivity fields by means of maximum Gauss copula

Kraus, D.: Two phase flow in homogeneous porous media - The role of dynamic capillary pressure in modeling gravity driven fingering

Brugman, R.: Dimensionless analysis of convection enhanced drug delivery to brain tissues

Sinsbeck, M.: Adaptive grid refinement for two-phase flow in porous media

Kissling, F. / Helmig, R. / Rohde, C.: A multi-scale approach for the modelling of infiltration processes in the unsaturated zone

Köppl, T. / Wohlmuth, B. / Helmig, R.: Reduced one-dimensional modelling and numerical simulation for mass transport in fluids

Kumar, K. / Pop, I.S. / Radu, F.A.: Convergence analysis for a conformal discretization of a model for precipitation and dissolution in porous media

Hommel, J.: Modelling biofilm induced calcite precipitation and its effect on two phase flow in porous media
2012/4 Estrella, D.: Experimental and numerical approximation methods for zero-valent iron transport around injection wells

2012/5 Heimhuber, R.: Efficient history matching for reduced reservoir models with PCE-based bootstrap filters

2012/6 Kissling, F. / Karlsen, K.H.: On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure

2012/7 Fritz, S.: Experimental investigations of water infiltration into unsaturated soil - Analysis of dynamic capillarity effects

2012/8 Strohmer, V.: Numerische Analysis von nahezu parallelen Strömungen in porösen Medien

2012/9 Kissling, F. / Rohde, C.: The computation of nonclassical shock waves in porous media with a heterogeneous multiscale method: The multidimensional case

2012/10 Fetzer, T.: Numerical analysis of the influence of turbulence on exchange processes between porous-medium and free flow

2012/11 Schröder, P.: A response surface bootstrap filter to calibrate CO₂ injection models

2013/2 Köppel, M.: Flow modelling of coupled fracture-matrix porous media systems with a two mesh concept

2013/3 van Helvoort, M.: Upscaling of processes involving rough boundaries

2013/4 Redeker, M. / Haasdonk, B.: A POD-EIM reduced two-scale model for crystal growth

2013/5 Vogler, D.: A comparison of different model reduction techniques for model calibration and risk assessment

2014/1 Song, N.: Investigation of a decoupling scheme for the modeling of reactive transport

2014/2 Aydogdu, A.B.: Phase field modelling of critical shear band evolution in granular media on the basis of a micropolar porous medium theory

2014/3 Becker, B.: Investigation of error estimates for cell centered finite volume schemes: Analysis and improvement of grid adaptation strategies in DuMux

2014/4 Moghaddam, N.D.: Sorption of methane and ethane on Belgian black shale using a manometric setup

2014/5 Schwenck, N. / Flemisch, B. / Helmig, R. / Wohlmuth, B.: Dimensionally reduced flow models in fractured porous media: crossings and boundaries

2014/6 Redeker, M. / Pop, S. / Rohde, C.: Upscaling of a tri-phase phase-field model for precipitation in porous media

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/8</td>
<td>Radu, F.A. / Nordbotten, J.M. / Pop, I.S. / Kumar, K.</td>
<td>A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media</td>
</tr>
<tr>
<td>2015/2</td>
<td>Bause, M. / Radu, F. A. / Köcher, U.</td>
<td>Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space</td>
</tr>
<tr>
<td>2015/3</td>
<td>van Duijn, C. J. / Cao, X. / Pop, I. S.</td>
<td>Two-phase flow in porous media: dynamic capillarity and heterogeneous media</td>
</tr>
</tbody>
</table>